首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
张学军  高攀  柳清菊 《物理学报》2010,59(7):4930-4938
本文采用基于密度泛函理论的平面波超软赝势方法研究了N,Fe共掺杂TiO2的晶体结构、电子结构和光学性质.研究表明,N,Fe共掺杂TiO2的晶格体积、原子间的键长及原子的电荷量发生变化,导致晶体中产生八面体偶极矩,并因此光生电子-空穴对有效分离,提高TiO2的光催化活性;N,Fe共掺杂同时在导带底和价带顶形成了杂质能级,使TiO2的禁带宽度变窄,光吸收带边红移到可见光区,这些杂质能级可以降低光生载流子的复合概率,提高Ti  相似文献   

2.
In this paper we present spectroscopic properties of doped and undoped titanium dioxide (TiO2) as nanofilms prepared by the sol-gel process with rhodamine 6G doping and studied by photoacoustic absorption, excitation and emission spectroscopy. The absorption spectra of TiO2 thin films doped with rhodamine 6G at very low concentration during their preparation show two absorption bands, one at 2.3 eV attributed to molecular dimmer formation, which is responsible for the fluorescence quenching of the sample and the other at 3.0 eV attributed to TiO2 absorption, which subsequently yields a strong emission band at 600 nm. The electronic band structure and optical properties of the rutile phase of TiO2 are calculated employing a fully relativistic, full-potential, linearized, augmented plane-wave (FPLAPW) method within the local density approximation (LDA). Comparison of this calculation with experimental data for TiO2 films prepared for undoped sol-gels and by sputtering is performed.  相似文献   

3.
The electronic structures of titanium dioxide (TiO2) doped with 3d transition metals (V, Cr, Mn, Fe, Co and Ni) have been analyzed by ab initio band calculations based on the density functional theory with the full-potential linearized-augmented-plane-wave method. When TiO2 is doped with V, Cr, Mn, Fe, or Co, an electron occupied level occurs and the electrons are localized around each dopant. As the atomic number of the dopant increases the localized level shifts to lower energy. The energy of the localized level due to Co is sufficiently low to lie at the top of the valence band while the other metals produce midgap states. In contrast, the electrons from the Ni dopant are somewhat delocalized, thus significantly contributing to the formation of the valence band with the O p and Ti 3d electrons. Based on a comparison with the absorption and photoconductivity data previously reported, we show that the t2g state of the dopant plays a significant role in the photoresponse of TiO2 under visible light irradiation.  相似文献   

4.
3d过渡金属掺杂锐钛矿相TiO2的第一性原理研究   总被引:5,自引:0,他引:5       下载免费PDF全文
赵宗彦  柳清菊  张瑾  朱忠其 《物理学报》2007,56(11):6592-6599
采用基于密度泛函理论的平面波超软赝势方法研究了纯锐钛矿相TiO2及掺杂3d过渡金属TiO2的几何、电子结构及光学性质. 计算结果表明掺杂能级的形成主要是掺杂过渡金属3d轨道的贡献,掺杂能级在禁带中的位置是决定TiO2吸收带边能否出现红移的重要因素. Cr,Mn,Fe,Ni,Co,Cu掺杂使TiO2的吸收带边产生红移,并在可见光区有一定的吸收系数; Sc,Zn掺杂使TiO2的吸收带边产生蓝移,但在可见光区有较大的吸收系数;掺V不但使TiO2的吸收带边产生红移,增强了在紫外光区的光吸收,而且在可见光区有非常大的吸收系数.  相似文献   

5.
张学军  张光富  金辉霞  朱良迪  柳清菊 《物理学报》2013,62(1):17102-017102
采用第一性原理平面波超软赝势方法研究了N,Co共掺杂锐钛矿相TiO2的微观结构和光学性质.结果表明:N,Co共掺杂后TiO2晶格中产生的偶极矩使光生电子-空穴对更有效地分离;在TiO2导带和价带之间形成了新的杂质能级,一方面使吸收带边红移到可见光区,光吸收性能明显增强,另一方面有利于光生电子-空穴对的分离,提高TiO2的光量子效率;与纯TiO2相比,N,Co共掺杂锐钛矿相TiO2带边的氧化还原势只有微小的变化,共掺杂后TiO2的强氧化还原能力得以保持.  相似文献   

6.
Photocatalyst titanium dioxide (TiO2) thin films were prepared using sol-gel process. To improve the photosensitivity of TiO2 at visible light, transition metal of Fe was implanted into TiO2 matrix at 20 keV using the metal plasma ion implantation process. The primary phase of the Fe-implanted TiO2 films is anatase, but X-ray diffraction revealed a slight shift of diffraction peaks toward higher angles due to the substitutional doping of iron. The additional band gap energy levels were created due to the formation of the impurity levels (Fe-O) verified by X-ray photoelectron spectroscopy, which resulted in a shift of the absorption edge toward a longer wavelength in the absorption spectra. The optical band gap energy of TiO2 films was reduced from 3.22 to 2.87 eV with an increase of Fe ion dosages from 0 to 1 × 1016 ions/cm2. The band gap was determined by the Tauc plots. The photocatalysis efficiency of Fe-implanted TiO2 was assessed using the degradation of methylene blue under ultraviolet and visible light irradiation. The calculated density of states for substitutional Fe-implanted TiO2 was investigated using the first-principle calculations based on the density functional theory. A combined experimental and theoretical Fe-implanted TiO2 film was formed, consistent with the experimentally observed photocatalysis efficiency of Fe-implanted TiO2 in the visible region.  相似文献   

7.
The crystal structure, electronic structure, optical properties and photocatalytic activity of the native defects in anatase TiO2 were investigated based on the density-functional theory (DFT). The results show that oxygen vacancies (VO) have the lowest formation energy, and thus are easiest to form in the bulk structure. The conduction and valence band moves to the high or low energy region, and the energy gap becomes narrower for the native point defect models. In particular, oxygen interstitials (Oi) have a direct band gap, and new gap states appear in the band gap, which can be responsible for the high photocatalytic efficiency in anatase TiO2. The phenomenon of “impurity compensation” takes place for the oxygen and titanium interstitials. Ti vacancy (VTi) can promote the utilization of solar light by analyzing the absorption spectra. All the calculated results show that Oi and VTi are beneficial in improving the photocatalytic activity of TiO2 in the UV–visible light range.  相似文献   

8.
周诗文  彭平  陈文钦  庾名槐  郭惠  袁珍 《物理学报》2019,68(3):37101-037101
采用基于密度泛函理论加U的计算方法,研究了Ce和O空位单(共)掺杂锐钛矿相TiO_2的电子结构和光吸收性质.计算结果表明,Ce和O空位共掺杂TiO_2的带隙中出现了杂质能级,且带隙窄化为2.67 eV,明显比纯TiO_2和Ce,O空位单掺杂TiO_2的要小,因而可提高TiO_2对可见光的响应能力,使TiO_2的光吸收范围增加.光吸收谱显示,掺杂后TiO_2的光吸收边发生了显著红移;在400.0—677.1 nm的可见光区,共掺杂体系的光吸收强度显著高于纯TiO_2和Ce单掺杂TiO_2,而略低于O空位单掺杂TiO_2.此外,Ce掺杂TiO_2中引入O空位后,TiO_2的导带边从-0.27 eV变化为-0.32 eV,这表明TiO_2的导带边的还原能力得到了加强.计算结果为Ce和O空位共掺杂TiO_2在可见光光解水方面的进一步研究提供了有力的理论依据.  相似文献   

9.
郑树凯*  吴国浩  刘磊 《物理学报》2013,62(4):43102-043102
利用基于密度泛函理论的第一性原理对不同P掺杂形式(P替位Ti, P替位O, 间隙P)的锐钛矿相TiO2的晶格常数、电荷布居、能带结构、分态密度和吸收光谱进行了计算. 结果表明, P替位Ti时, TiO2体积减小, P替位O和间隙P的存在使TiO2的体积膨胀; 替位Ti的P和间隙P均有不同程度的氧化, 而替位O的P带有负电荷. 三种P掺杂形式均导致锐钛矿相TiO2禁带宽度的增大, 并在TiO2禁带之内引入了掺杂局域能级. P掺杂导致TiO2禁带宽度增大的程度依次为: 间隙P>P替位Ti>P替位O. 吸收光谱的计算结果表明, P替位Ti并不能增强TiO2的可见光吸收能力, 但间隙P的存在大幅提高了TiO2的可见光光吸收能力, 间隙P有可能是造成实验上P掺杂增强锐钛矿相TiO2光催化活性的重要原因. 关键词: P掺杂 2')" href="#">锐钛矿相TiO2 第一性原理  相似文献   

10.
张小超  赵丽军  樊彩梅  梁镇海  韩培德 《物理学报》2012,61(7):77101-077101
采用基于密度泛函理论的第一性原理方法对未掺杂以及不同浓度过渡金属Fe,Co,Ni,Zn掺杂金红石TiO2的超晶胞体系进行了几何优化,并讨论了其晶格常数,电子能带结构和光学性质.研究结果表明:掺杂前后的晶格参数与实验值偏差在3.6%以下;适量的过渡金属掺杂不但影响体系能带结构,拓宽光吸收范围,而且扮演着俘获电子的重要角色,有利于光生电子-空穴对的有效分离以及增强光吸收能力;Fe,Co,Ni,Zn最佳理论掺杂体系分别为Ti0.75Fe0.25O2,Ti0.75Co0.25O2,Ti0.75Ni0.25O2,Ti0.83Zn0.17O2;Fe,Co,Ni3d态分裂为t2g和eg态,分别贡献于价带高能级和导带低能级部分,促进了电子-空穴对的生成,从而可提高TiO2的光催化性能;Zn3d态电子成对填满轨道,不易被激发,故光催化活性无明显提高.  相似文献   

11.
A detailed analysis of the energy level structure of the six-fold coordinated Cr3+ ion in the chromium oxide Cr2O3 is performed using the exchange charge model of the crystal field theory. Parameters of the crystal field acting on the Cr3+ optical electrons are calculated from the crystal structure data for the [CrO6]9− impurity center. The energy levels obtained are compared with the experimental absorption spectra for the considered crystal; a good agreement with experimental data is demonstrated. One possible explanation for the ultraviolet p1 absorption band is proposed based on the results of crystal field calculations.  相似文献   

12.
刘庆生  游拯  曾少军  国辉 《发光学报》2016,(11):1316-1322
采用溶胶-凝胶法制备了纯的和Mg~(2+)-Ni~(2+)掺杂的LaFeO_3,并对它们在近红外波段的发射率进行了研究和比较。结果表明,34%(摩尔分数)的Mg~(2+)和23%(摩尔分数)的Ni~(2+)掺杂的LaFeO_3即LaMg0.34Ni0.23Fe0.43O_3在0.2~2μm波段的红外发射率达到了0.966,远高于未掺杂LaFeO_3的0.446。Mg~(2+)-Ni~(2+)共掺杂能够显著提高LaFeO_3在近红外波段的发射率的原因在于Mg~(2+)、Ni~(2+)进入铁酸镧的晶格中取代Fe3+,引入了杂质能级,氧空位浓度增加,提高了杂质能级吸收以及氧空位吸收,掺杂引起的晶格畸变使得晶格振动吸收增强;此外,电子在Fe3+和Fe4+之间的极化跃迁,也增强了化合物在相应光谱区域的吸收性能。  相似文献   

13.
王寅  冯庆  王渭华  岳远霞 《物理学报》2012,61(19):193102-193102
近年来的理论和实验研究表明,通过不同离子共掺杂TiO2是减小其禁带宽度的一种有效方法.本文采用基于第一性原理的平面波超软赝势方法研究了C和Zn共掺杂TiO2的能带结构、态密度和光学性质.计算结果表明C-Zn共掺杂导致导带相对Fermi能级发生了明显的下降,同时在TiO2的导带下方与价带上方形成了新的杂质能级,使TiO2的禁带宽度变小, TiO2的光学吸收带边产生红移. 杂质能级可以降低光激发产生的电子-空穴对的复合概率, 提高TiO2的光催化效率. 此外, 掺杂后TiO2在可见光区的吸收系数有明显增加, 能量损失也明显减小.  相似文献   

14.
S掺杂对锐钛矿相TiO2电子结构与光催化性能的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
赵宗彦  柳清菊  朱忠其  张瑾 《物理学报》2008,57(6):3760-3768
采用基于第一性原理的平面波超软赝势方法研究了掺杂不同价态S的锐钛矿相TiO2的晶体结构、杂质形成能、电子结构及光学性质.计算结果表明硫在掺杂体系中的存在形态与实验中的制备条件有关;掺杂后晶格发生畸变、原子间的键长及原子的电荷量也发生了变化,导致晶体中的八面体偶极矩增大; S 3p态与O 2p态、Ti 3d态杂化而使导带位置下移、价带位置上移及价带宽化,从而导致TiO2的禁带宽度变窄、光吸收曲线红移到可见光区.这些结果很好地解释了S掺杂锐钛矿相TiO2在可见光下具有优良的光催化性能的内在原因.根据计算结果分析比较了硫以不同离子价态掺杂对锐钛矿相TiO2电子结构和光催化性能影响的差别. 关键词: 2')" href="#">锐钛矿相TiO2 S掺杂 第一性原理 光催化性能  相似文献   

15.
The band structures, densities of states and absorption spectra of pure ZnO and two heavily Ni doped supercells of Zn0.9722Ni0.0278O and Zn0.9583Ni0.0417O have been investigated using the first-principles plane-wave ultrasoft pseudopotential method based on the density functional theory. The calculated results showed that the band gap is narrowed by Ni doping in ZnO; this, is because the conduction band undergoes a greater shift toward the low-energy region than the valence band and because heavier doping concentrations lead to, narrower band gaps. Moreover, the optical absorption edge exhibits a redshift due to the narrowing of the band gap. Heavier doping concentrations leads to more significant redshifts, which is in agreement with the experimental results.  相似文献   

16.
The effects of mono-doping of 4f lanthanides with and without oxygen vacancy defect on the electronic structures of anatase TiO2 have been studied by first-principles calculations with DFT+U (DFT with Hubbard U correction) to treat the strong correlation of Ti 3d electrons and lanthanides 4f electrons. Our results revealed that dopant Ce is easy to incorporate into the TiO2 host by substituting Ti due to its lower substitutional energy (∼−2.0 eV), but the band gap of the system almost keeps intact after doping. The Ce 4f states are located at the bottom of conduction band, which mainly originates from Ti 3d states. The magnetic moment of doped Ce disappears due to electron transfer from Ce to the nearest O atoms. For Pr and Gd doping, their substitutional energies are similar and close to zero, indicating that both of them may also incorporate into the TiO2 host. For Pr doping, some 4f spin-down states are located next to the bottom of the conduction band and narrow the band gap of the doping system. However, for Gd doping, the 4f states are located in deep valence band and there is no intermediate band in the band gap. The magnetic moment of dopant Gd is close to the value of isolated Gd atom (∼7 μB), indicating no overlapping between Gd 4f with other orbitals. For Eu, it is hard to incorporate into the TiO2 host due to its very higher substitutional energy. The results also indicated that oxygen vacancy defect may enhance the adsorption of the visible light in Ln-doped TiO2 system.  相似文献   

17.
《Physics letters. A》2020,384(26):126637
The electronic, magnetic properties and optical absorption of vanadium (V) doped rutile TiO2 have been studied by the generalized gradient approximation GGA and GGA+U (Hubbard coefficient) approach respectively. On the one hand, we consider the influence of vanadium with different doping concentration on the electronic structure. On the other hand, we study double V atoms doped TiO2, mainly study four V-doped TiO2 configurations, and find the magnetic ground states are ferromagnetic state. For the TiO2@V-V1, TiO2@V-V3 and TiO2@V-V4 configurations without O ion as bridge between V-V atoms, there will have a metastable state of antiferromagnetic configurations, while, for the TiO2@V-V2 configurations with an O ion as bridge between V-V atoms, due to the existence of superexchange between V-O-V, there will only exist the ground state of ferromagnetic state and there are no other metastable configurations. Furthermore, the optical properties of V-doped TiO2 are calculated. The results show that the V-doped TiO2 has strong infrared light absorption and visible light absorption.  相似文献   

18.
In this research, we have studied the doping behaviors of eight transition metal ion dopants on the crystal phase, particle sizes, XRD patterns, adsorption spectra, anatase fraction, and photoreactivity of TiO2 nanoparticles. The pristine and ion-doped TiO2 nanoparticles of 15.91-25.47 nm were prepared using sol–gel method. Test metal ion concentrations ranged from 0.00002 to 0.2 at.%. The absorption spectra of the TiO2 nanoparticles were characterized using UV-Visible spectrometer. The wavelength of the absorption edge of TiO2 was estimated using the spectra derivative-tangent method. The photoreactivities of pristine and ion-doped TiO2 nanoparticles under UV irradiation were quantified by the decoloring rate of methyl orange. XRD patterns were recorded using a Rigaku D/MAX-2500 V diffractometer with Cu Kα radiation (50 kV and 250 mA), and particle size and anatase fraction were calculated. Results reveal that different ion doping exhibited complex effects on the studied characteristics of TiO2 nanoparticles. In general, red shift occurred to ion-doped TiO2 nanoparticles, but still with higher TiO2 photoreactivities when doped with Fe3+ and Ni2+ ions. Among the ions investigated, Ni-doped TiO2 nanoparticles have shown highest photoreactivity at the concentration of 0.002 at.%, about 1.9 times that of the pristine TiO2. Ion doping was shown to reduce the diameter and influence the fraction of anatase. Data also indicated that the combination of anatase diameter and ion radius might play an important role in the photoreactivity of TiO2 nanoparticles. This investigation contributes to the understanding of complex ion doping effects on TiO2 nanoparticles, and provides references for enhancing their environmental application.  相似文献   

19.
The influences of different doped Ga amount on the band gaps of rutile TiO2 have been investigated systematically using density functional theory calculations. The calculation results show that the substitutions of Ga can make the configurations more stable, and the lower doped amount can induce the red shift of the absorption edge by reducing their band gaps, such as Ga1Ti15O32 and Ga3Ti13O32 samples, whereas the band gaps slightly increase with the higher doping amount. The narrower band gaps are due to the valence band edges shifting upwards with energy levels of impurities produced by lower Ga doping amount, however, the wider band gaps are caused by the dominant rises of conduction band bottoms when Ga doping contents are larger. As a result, proper doping content of Ga can reduce their band gaps and improve the light absorption performances of TiO2 gradually.  相似文献   

20.
First-principles density functional theory calculations have been carried out to investigate electronic structures of anatase TiO2 with substitutional dopants of N, Nd, and vacancy, which replace O, Ti, and O, respectively. The calculation on N-doped TiO2 with the local density approximation (LDA) demonstrates that N doping introduces some states located at the valence band maximum and thus makes the original band gap of TiO2 smaller. Examining the effect of the strong correlation of Nd 4f electrons on the electronic structure of Nd-doped TiO2, we have obtained the half-metallic ground state with the LDA and the insulating ground state with the LDA+U (Hubbard coefficient), respectively. In addition, the calculation on vacancy-doped TiO2 with the LDA shows that a vacancy can induce some states in the band-gap region, which act as shallow donors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号