首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 1 毫秒
1.
A new, accurate, global, mass-independent, first-principles potential energy surface (PES) is presented for the ground electronic state of the water molecule. The PES is based on 2200 energy points computed at the all-electron aug-cc-pCV6Z IC-MRCI(8,2) level of electronic structure theory and includes the relativistic one-electron mass-velocity and Darwin corrections. For H216O, the PES has a dissociation energy of D0 = 41 109 cm−1 and supports 1150 vibrational energy levels up to 41 083 cm−1. The deviation between the computed and the experimentally measured energy levels is below 15 cm−1 for all the states with energies less than 39 000 cm−1. Characterization of approximate vibrational quantum numbers is performed using several techniques: energy decomposition, wave function plots, normal mode distribution, expectation values of the squares of internal coordinates, and perturbing the bending part of the PES. Vibrational normal mode labels, though often not physically meaningful, have been assigned to all the states below 26 500 cm−1 and to many more above it, including some highly excited stretching states all the way to dissociation. Issues to do with calculating vibrational band intensities for the higher-lying states are discussed.  相似文献   

2.
IR absorption spectra, 4200–3100 cm−1, of water in CCl4 solutions are presented. It is shown that for saturated solutions significant amounts of water are present as dimer (ca. 2%). The IR spectra of the monomer and dimer are retrieved. The integrated absorption coefficients of the monomer absorption are significantly enhanced relative to the gas phase values. The dimer spectrum consists of 5 bands, of which 4 were expected from data from cold beams and cold matrices. The origin of the “extra” band is discussed. In addition it is argued that the dimer absorption bands intensities must be enhanced relative to the gas phase values. Based on recent calculations of band strengths, and observed frequency shifts relative to the gas phase, the intensity enhancement factors are estimated as well as the monomer/dimer equilibrium constant in CCl4 solution at T=296 K (Kc=1.29 mol−1 L). It is noted that the observed dimer spectrum has a striking resemblance with the water vapour continuum determined by Burch in 1985 which was recently remeasured by Paynter et al. and it is concluded that the atmospheric water absorption continuum in the investigated spectral region must be due to water dimer. Based on the newly published spectral data a revised value of the gas phase equilibrium constant is suggested (Kp=0.035 atm−1 at T=296 K) as well as a value for the standard enthalpy of formation, ΔH0=15.4 kJ mol−1.  相似文献   

3.
This is the second of a series of articles reporting critically evaluated rotational-vibrational line positions, transition intensities, pressure dependences, and energy levels, with associated critically reviewed assignments and uncertainties, for all the main isotopologues of water. This article presents energy levels and line positions of the following singly deuterated isotopologues of water: HD16O, HD17O, and HD18O. The MARVEL (measured active rotational-vibrational energy levels) procedure is used to determine the levels, the lines, and their self-consistent uncertainties for the spectral regions 0-22 708, 0-1674, and 0-12 105 cm−1 for HD16O, HD17O, and HD18O, respectively. For HD16O, 54 740 transitions were analyzed from 76 sources, the lines come from spectra recorded both at room temperature and from hot samples. These lines correspond to 36 690 distinct assignments and 8818 energy levels. For HD17O, only 485 transitions could be analyzed from three sources; the lines correspond to 162 MARVEL energy levels. For HD18O, 8729 transitions were analyzed from 11 sources and these lines correspond to 1864 energy levels. The energy levels are checked against ones determined from accurate variational nuclear motion computations employing exact kinetic energy operators. This comparison shows that the measured transitions account for about 86% of the anticipated absorbance of HD16O at 296 K and that the transitions predicted by the MARVEL energy levels account for essentially all the remaining absorbance. The extensive list of MARVEL lines and levels obtained are given in the Supplementary Material of this article, as well as in a distributed information system applied to water, W@DIS, where they can easily be retrieved. In addition, the transition and energy level information for H217O and H218O, given in the first paper of this series [Tennyson, et al. J Quant Spectr Rad Transfer 2009;110:573-96], has been updated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号