首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Infrared absorption cross sections for acetone (propanone) have been determined in the 830-1950 cm−1 spectral region from spectra recorded using a high-resolution FTIR spectrometer (Bruker IFS 125HR) and a multipass cell with a maximum optical path length of 19.3 m. The spectra of mixtures of acetone with dry synthetic air were recorded at 0.015 cm−1 resolution (calculated as 0.9/MOPD using the Bruker definition of resolution) at a number of temperatures between 194 and 251 K and pressures appropriate for atmospheric conditions. Intensities were calibrated using three acetone spectra (recorded at 278, 293 and 323 K) taken from the Pacific Northwest National Laboratory (PNNL) IR database. The new absorption cross sections have been combined with previous high spectral resolution results to create a more complete set of acetone absorption cross sections appropriate for atmospheric remote sensing. These cross sections will provide an accurate basis for upper tropospheric/lower stratospheric retrievals of acetone in the mid-infrared spectral region from ACE and MIPAS satellite data.  相似文献   

2.
High resolution infrared absorption cross sections of acetonitrile have been determined from spectra recorded in the 3 μm spectral region using a Bruker IFS 125 HR Fourier transform spectrometer (FTS) and a multipass White cell. The eleven synthetic air-broadened acetonitrile spectra were recorded at a resolution of 0.015 cm−1 (calculated as 0.9/MOPD (Maximum Optical Path Difference), the Bruker definition of resolution) over a range of different temperatures and pressures that are representative of conditions in the Earth's atmosphere (50-760 Torr and 207-296 K). Intensities were calibrated using infrared spectra recorded at the Pacific Northwest National Laboratory (PNNL). These new cross sections will enable satellite retrievals of acetonitrile in the 3 μm region from atmospheric spectra recorded by satellite instruments, such as the ACE (Atmospheric Chemistry Experiment)-FTS.  相似文献   

3.
Infrared absorption cross sections for acetonitrile (methyl cyanide; CH3CN) have been determined in the 880–1700 cm?1 spectral region from spectra recorded using a high-resolution FTIR spectrometer (Bruker IFS 125 HR) and a multipass cell with a maximum optical pathlength of 19.3 m. Spectra of acetonitrile/dry synthetic air mixtures were recorded at 0.015 cm?1 resolution (calculated as the Bruker instrument resolution of 0.9/MOPD) at a number of temperatures between 203 and 297 K and pressures appropriate for atmospheric conditions. Intensities were calibrated using three composite acetonitrile spectra recorded at the Pacific Northwest National Laboratory. These absorption cross sections will provide an accurate basis for upper tropospheric/lower stratospheric retrievals of acetonitrile in the mid-infrared spectral region from ACE satellite data.  相似文献   

4.
Infrared absorption cross sections for ethane have been measured in the 3 μm spectral region from spectra recorded using a high-resolution FTIR spectrometer (Bruker IFS 125/HR). Results are presented for pure ethane gas from spectra recorded at 0.004 cm−1 resolution and for mixtures with dry synthetic air from spectra obtained at 0.015 cm−1 resolution (calculated as 0.9/MOPD using the Bruker definition of resolution), at a number of temperatures and pressures appropriate for atmospheric conditions. Intensities were calibrated using three ethane spectra (recorded at 278, 293, and 323 K) taken from the Pacific Northwest National Laboratory (PNNL) IR database.  相似文献   

5.
Infrared absorption cross sections for propane have been measured in the 3 μm spectral region from spectra recorded using a high-resolution FTIR spectrometer (Bruker IFS 125 HR). The spectra of mixtures of propane with dry synthetic air were recorded at 0.015 cm−1 resolution (calculated as 0.9/MOPD using the Bruker definition of resolution), at a number of temperatures and pressures appropriate for atmospheric conditions. Intensities were calibrated using two propane spectra (recorded at 278 and 293 K) taken from the Pacific Northwest National Laboratory (PNNL) IR database.  相似文献   

6.
Oxygen pressure induced broadening and shifting coefficients for water vapor absorption lines in the 8600–9010 cm−1 region have been measured and calculated. The spectra were recorded with a Bruker IFS 125HR spectrometer at a spectral resolution of 0.01 cm−1 for lines with angular moment of the upper states up to 10. Calculations of line broadening and shifting coefficients are performed using a semi-empirical approach. The method is based on the impact theory of broadening, and includes the correction factors whose parameters can be determined by fitting the broadening or shifting coefficients to the experimental data. The comparison of our calculations with the experimental values argues that the semi-empirical method is quite acceptable for the determination of the water vapor absorption line profile parameters.  相似文献   

7.
A series of infrared absorption cross-sections for acetaldehyde has been measured in the 3 μm region from spectra obtained using a high-resolution Fourier transform spectrometer (Bruker IFS 125/HR). Results presented are for mixtures of acetaldehyde vapor combined with pure synthetic air taken at various temperatures and pressure to simulate atmospheric conditions found principally in the Earth's troposphere and lower stratosphere. Spectra were recorded at a resolution of 0.005 cm−1 and intensities were calibrated using three acetaldehyde spectra (measured at 278, 298 and 323 K) provided by the Pacific Northwest National Laboratory (PNNL) IR database.  相似文献   

8.
The Fourier-transform infrared emission spectra of BO were recorded using a Bruker IFS 125 HR spectrometer. The observed spectrum of BO in the 1200-2100 cm−1 region contains three bands: the fundamental bands of 11BO and 10BO and a hot band of 11BO with band origins measured to be 1861.9242(97), 1915.3071(09) and 1838.3773(68) cm−1, respectively.  相似文献   

9.
The absorption spectra of methane at different path lengths and different pressures for three temperatures 180, 240 and 296 K have been recorded in the 5556-6166 cm−1 region using the Bruker IFS 120 HR and 125 HR high-resolution Fourier transform spectrometers. The multispectrum fitting procedure has been applied to these spectra to recover the spectral line parameters. The main goal of this procedure was the determination of self-broadening and self-pressure-induced shift coefficients and the exponents of their temperature dependences. These parameters have been derived for 406 assigned lines with good values of the signal to noise ratio. The rotational dependence of these parameters is discussed.  相似文献   

10.
The absorption spectra of carbon dioxide (isotope 626, natural abundance in air, ambient temperature) have been studied at total pressures 68-570 Torr with spectral resolution 0.003-0.005 cm−1. The spectra were measured in the spectral domain of 2273-2393 cm−1 by FTIR spectrometer Bruker IFS 125 HR equipped with White-type multipass cell (6.4-41.6 m) and with a cell having 10 cm optical path length. Pressure broadening and shift coefficients were obtained from a series of spectra by means of a nonlinear least-squares spectral fitting technique for the lines of the (00011)←(00001) band with rotational quantum number up to J=82. For fitting of the individual line shapes, we used the Voigt profile with pre-calculated Doppler broadening parameter. The experimental pressure broadening and shift coefficients are compared with the values available in spectroscopic databases HITRAN 2008 and Carbon Dioxide Spectroscopic Databank (CDSD-296) and with other experimental values reported in the literature.  相似文献   

11.
Infrared absorption cross sections for acetone (propanone), CH3C(O)CH3, have been determined in the 3 μm spectral region from spectra recorded using a high-resolution FTIR spectrometer (Bruker IFS 125 HR) and a multipass cell with a maximum optical path length of 19.3 m. The spectra of mixtures of acetone with dry synthetic air were recorded at 0.015 cm−1 resolution (calculated as 0.9/MOPD using the Bruker definition of resolution) at a number of temperatures and pressures (50-760 Torr and 195-296 K) appropriate for atmospheric conditions. Intensities were calibrated using three acetone spectra (recorded at 278, 293 and 323 K) taken from the Pacific Northwest National Laboratory (PNNL) IR database.  相似文献   

12.
Nitromethane, with its heavy frame and internal rotator, readily evaporates into the atmosphere making it an ideal candidate for remote sensing. Here we present the absorption spectra of gas-phase nitromethane between 9 and 50 cm−1. Measurements were taken using a Bruker IFS 66v Fourier transform far-infrared (FTIR) spectrometer at a resolution of 0.12 cm−1 (0.0036 THz) from 9 to 40 cm−1 and a Bruker Vertex 80v FTIR spectrometer with a resolution of 0.0075 cm−1 (0.00226 THz) from 10 to 50 cm−1. The absorption spectra were measured at multiple pathlengths ranging from 2 to 6 m. These measurements were used to calculate the absorption coefficient of nitromethane as a function of wavenumber.  相似文献   

13.
We present an optical setup for variable angle mid infra red spectroscopic ellipsometry. The arrangement can be placed into the sample compartment of a Bruker ifs66v/s vacuum Fourier transform infrared spectrometer. A first prototype of the setup has been tested in the spectral range from 650 cm−1 to 4000 cm−1 and can measure incidence angles between 8° and 87°. We compare the measured data to reference measurements with a commercial variable angle infrared spectroscopic ellipsometer. The comparison gives a proof of concept for the discussed optical arrangement.  相似文献   

14.
The absorption spectra of carbon monoxide confined in three aerogel samples with different pore sizes have been recorded within the 4100–4400?cm-1 spectral region at room temperature. The measurements were made using a Bruker IFS 125HR Fourier-transform infrared spectrometer. Lineshift and half-width values for CO were obtained. The influence of pore sizes on dependence of CO line half-width values on rotational quantum numbers was studied.  相似文献   

15.
A high-enthalpy source (HES) has been developed in Rennes either to heat gases up to 2000 K in local thermodynamic equilibrium (LTE) or to generate hypersonic expansions. The HES prototype has been associated with a high-resolution Bruker IFS 120 HR Fourier transform spectrometer to record emission spectra of hot gases, in LTE conditions. A series of emission spectra of methane has been obtained at 1005, 1365, 1485, 1625 and 1820 K in the pentad spectral region located around 3000 cm−1, at Doppler-limited resolution (0.02 cm−1). Spectra have been corrected for the transmission function that strongly affects the infrared radiation emitted by the hot gas. Line-integrated absorption cross sections have been extracted from the corrected spectra using an improved procedure for the calculation of the total partition function Q of methane at high temperature. This calculation included anharmonicity and rovibrational interaction effects, and was based on a multi-resolution fully converged direct partition sum. It has been shown that, as the temperature increases above 1000 K, the commonly used harmonic and rigid rotor double approximation to estimate Q leads to underestimated values.  相似文献   

16.
The water vapor line broadening and shifting in the ν1+ν2+ν3 band induced by nitrogen pressure are measured with Bruker IFS 125 HR FTIR spectrometer at the spectral resolution of 0.01 cm−1 for the line with upper states angular momentum up to 11. Line contour parameters are calculated using a semi-empirical approach extended by the use of empirical data to determine some fitting model parameters. We use the complete set of high accuracy vibration-rotation dipole transition moments calculated for all possible transitions using wavefunctions determined from variational nuclear motion calculations and an ab initio dipole moment surface. Calculated values of line contour parameters are in a good agreement with observed parameters.  相似文献   

17.
Line intensities of 13C16O2 have been measured between 5851 and 6580 cm−1 using CW-cavity ring down spectroscopy (CRDS) and in the 4700-5050 and 6050-6850 cm−1 regions using Fourier transform spectroscopy. As a result of the high sensitivity (noise equivalent absorption αmin∼3×10−10 cm−1) and high dynamics allowed by CW-CRDS, accurate line intensities of 2039 transitions ranging between 1.1×10−28 and 1.3×10−23 cm−1/(molecule cm−2) were measured with an average accuracy of 4%. These transitions belong to a total of 48 bands corresponding to the ΔP=9 series of transitions. Additionally, unapodized absorption spectra of 13C-enriched samples have been recorded using a high-resolution Bruker IFS125HR Fourier transform spectrometer. Spectral resolutions of 0.004 cm−1 (maximum optical path difference (MOPD)=225 cm) and 0.007 cm−1 (MOPD=128.6 cm), and pressure×path length products in the ranges 5.2-12 and 69-450 hPa×m have been used for the lower and higher energy spectral regions, respectively. Absolute line intensities have been measured in the 2001i−00001, 3001i−00001 (i=1, 2, 3) and 00031−00001 bands. An excellent agreement was achieved for the line intensities of the 3001i−00001 (i=1, 2, 3) bands measured by both FTS and CW-CRDS. The CW-CRDS and FTS experimental intensity data together with selected intensity information from the literature have been fitted simultaneously using the effective operators approach. Two sets of effective dipole moment parameters have thus been obtained, which reproduce the observed line intensities in the 2.0 and 1.6 μm regions within experimental uncertainties.  相似文献   

18.
The spectrum of the ν7 band of cis-ethylene-d2 (cis-C2H2D2) has been recorded with an unapodized resolution of 0.0063 cm−1 in the 740-950 cm−1 region using a Bruker IFS 125 HR Fourier transform infrared spectrometer. By fitting 2186 infrared transitions of ν7 with a standard deviation of 0.00060 cm−1 using a Watson’s A-reduced Hamiltonian in the Ir representation, accurate rovibrational constants for ν7 = 1 state have been derived. The band center of ν7 has been found to be 842.20957 ± 0.00004 cm−1. In a simultaneous fit of 1331 infrared ground state combination differences from the present ν7 transitions, together with 22 microwave frequencies, ground state constants have been improved. The rms deviation of the ground state fit was 0.00027 cm−1.  相似文献   

19.
Thiophosgene (Cl2CS) is a favorite model system for studies of photophysics, vibrational dynamics, and intersystem interaction effects. But there are no previous rotationally-resolved infrared studies because the spectra are very congested due to hot bands and multiple isotopic species. This paper reports a detailed study of the ν2 (∼504 cm−1) and ν4 (∼471 cm−1) fundamental bands for the two most abundant isotopomers, 35Cl2CS and 35Cl37ClCS, based on spectra with observed line widths of ∼0.0008 cm−1 obtained at the Canadian Light Source far-infrared beamline using synchrotron radiation and a Bruker IFS125 Fourier transform spectrometer.  相似文献   

20.
The ν9 fundamental band (C-C-C deformation) of propane (C3H8) at 369 cm−1 has been studied at high-resolution (0.0011 cm−1) with spectra recorded using the synchrotron radiation from the French light source facility at SOLEIL coupled to a Bruker IFS 125HR Fourier transform spectrometer. A 2.526 m base multipass cell with optical paths from 10.296 to 151.78 m was used. In addition, a spectrum was also recorded using a conventional globar source. Comparison of these experimental spectra shows clearly the gain obtained on the signal-to-noise ratios with the synchrotron radiation. The spectra have been thoroughly analyzed and transitions up to J=65 and Ka=33 have been assigned. The upper-state rotational levels were fitted using an A-type Watson Hamiltonian written in the Ir representation. An accurate band center ν0 (ν9)=369.228080(25) cm−1 as well as accurate rotational and centrifugal distortion constants have been obtained and used to simulate a synthetic spectrum. These parameters should be useful to simulate hot bands of propane involving the 91 vibrational level as their lower state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号