首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper we present a new linearization of the Radiant radiative transfer model. Radiant uses discrete ordinates for solving the radiative transfer equation in a multiply-scattering anisotropic medium with solar and thermal sources, but employs the adding method (interaction principle) for the stacking of reflection and transmission matrices in a multilayer atmosphere. For the linearization, we show that the entire radiation field is analytically differentiable with respect to any surface or atmospheric parameter for which we require Jacobians (derivatives of the radiance field). Derivatives of the discrete ordinate solutions are based on existing methods developed for the LIDORT radiative transfer models. Linearization of the interaction principle is completely new and constitutes the major theme of the paper. We discuss the application of the Radiant model and its linearization in the Level 2 algorithm for the retrieval of columns of carbon dioxide as the main target of the Orbiting Carbon Observatory (OCO) mission.  相似文献   

2.
辐射传递蒙特卡洛法精度分析及数值试验   总被引:3,自引:1,他引:2  
本文建立了蒙特卡洛法模拟散射参与性介质内辐射传递计算模型。对蒙特卡洛法的计算精度及运行时间进行了较为详细的分析,提出了几种判断计算精度的方法。同时,借助蒙特卡洛法模拟辐射传递过程,进行数值“辐射实验”。利用该“实验结果”进行了物性反问题研究。在已知光学厚度的前提下,得到散射反照率与后半球辐射热流之间的单值函数关系。  相似文献   

3.
The main goal of this paper is to give a rigorous derivation of the generalized form of the direct (also referenced as forward) and adjoint radiative transfer equations. The obtained expressions coincide with expressions derived by Ustinov [Adjoint sensitivity analysis of radiative transfer equation: temperature and gas mixing ratio weighting functions for remote sensing of scattering atmospheres in thermal IR. JQSRT 2001;68:195-211]. However, in contrast to [Ustinov EA. Adjoint sensitivity analysis of radiative transfer equation: temperature and gas mixing ratio weighting functions for remote sensing of scattering atmospheres in thermal IR. JQSRT 2001;68:195-211] we formulate the generalized form of the direct radiative transfer operator fully independent from its adjoint. To illustrate the application of the derived adjoint radiative transfer operator we consider the angular interpolation problem in the framework of the discrete ordinate method widely used to solve the radiative transfer equation. It is shown that under certain conditions the usage of the solution of the adjoint radiative transfer equation for the angular interpolation of the intensity can be computationally more efficient than the commonly used source function integration technique.  相似文献   

4.
In graded index medium, the ray goes along a curved path determined by Fermat principle, and the curved ray-tracing is very difficult and complex. To avoid the complicated and time-consuming computation of curved ray trajectory, the methods not based on ray-tracing technique need to be developed for the solution of radiative transfer in graded index medium. For this purpose, in this paper the streaming operator along a curved ray trajectory in original radiative transfer equation for graded index medium is transformed and expressed in spatial and angular ordinates and the radiative transfer equation for graded index medium in cylindrical and spherical coordinate systems are derived. The conservative and the non-conservative forms of radiative transfer equation for three-dimensional graded index medium are given, which can be used as base equations to develop the numerical simulation methods, such as finite volume method, discrete ordinates method, and finite element method, for radiative transfer in graded index medium in cylindrical and spherical coordinate systems.  相似文献   

5.
In this paper we apply a numerical method on the equation of radiative transfer in a turbid atmosphere. The solution is obtained by means of direct integration of the equation of radiative transfer without any circuitous series development.  相似文献   

6.
The curved ray tracing method (CRT) is extended to radiative transfer in the linear-anisotropic scattering medium with graded index from non-scattering medium. In this paper, the CRT is presented to solve one-dimensional radiative transfer in the linear-anisotropic scattering gray medium with a linear refractive index and two black boundaries. The predicted temperature distributions and radiative heat flux at radiative equilibrium are determined by the proposed method, and numerical results are compared with the data in references. The results show that the CRT has a good accuracy for radiative transfer in the linear-anisotropic scattering medium with graded index and the dimensionless emissive power and dimensionless radiative heat flux depend on the dimensionless refractive index gradient. It can also be seen that the dimensionless refractive index gradient has important effects on the temperature discontinuity at the boundaries.  相似文献   

7.
In graded index medium, ray goes along a curved path determined by Fermat principle, and curved ray-tracing is very difficult and complex. To avoid the complicated and time-consuming computation of curved ray trajectories, a finite element method based on discrete ordinate equation is developed to solve the radiative transfer problem in a multi-dimensional semitransparent graded index medium. Two particular test problems of radiative transfer are taken as examples to verify this finite element method. The predicted dimensionless net radiative heat fluxes are determined by the proposed method and compared with the results obtained by finite volume method. The results show that the finite element method presented in this paper has a good accuracy in solving the multi-dimensional radiative transfer problem in semitransparent graded index medium.  相似文献   

8.
李树  邓力  田东风  李刚 《物理学报》2014,63(23):239501-239501
利用隐式蒙特卡罗方法模拟热辐射光子在物质中的输运过程时,物质辐射源粒子是需要细致处理的物理量.传统的物质辐射源粒子抽样方法是体平均抽样方法,对于大多数问题,这样处理不会带来大的偏差.但是对于一些辐射吸收截面大、单一网格内温差显著的问题,体平均抽样方法的计算结果偏差较大.分析了产生偏差原因,提出一种基于辐射能量密度分布的辐射源粒子空间位置抽样方法,并推导了相应的抽样公式以解决此类问题.数值实验表明,新方法计算结果明显优于原方法且与解析结果基本一致.  相似文献   

9.
The objective of this paper is to discuss the role of fluctuational electrodynamics in the context of a generalized radiative heat transfer problem. Near-field effects, including the interference phenomenon and radiation tunneling, are important for applications to nanostructures. The classical theory of radiative transfer cannot be readily applied as the feature size approaches the dominant wavelength of radiative emission. At all length scales, however, propagation of radiative energy is properly represented by the electromagnetic wave approach, which requires the solution of the Maxwell equations. Fluctuational electrodynamics provides a model for thermal emission when solving a near-field radiation heat transfer problem, and the fluctuation-dissipation theorem provides the bridge between the strength of the fluctuations of the charges inside a body and its local temperature. This paper provides a complete and systematic derivation of the near-field radiative heat flux starting from the Maxwell equations. An illustrative example of near-field versus far-field radiation heat transfer is presented, and the length scale for transition from near- to far-field regime is discussed; the results show that this length scale can be as large as three times than predicted from Wien's law.  相似文献   

10.
Radiative perturbation theory has proven to be a useful tool in radiative transfer calculations, especially in situations where repeated solution of the radiative transfer equation is required. So far however, its use has been restricted to non-polarized situations, including such applications as surface fluxes, UV indices, and the inversion of satellite radiance observations. Here, we extend the structure of radiative perturbation theory to incorporate the full Stokes formalism of polarization, to obtain the relevant equations for the first order term. This formalism will be applied to fluxes in a follow-up paper, and eventually to satellite observations.  相似文献   

11.
本文用射线踪迹-节点分析法研究了二维黑体表面矩形、各向同性散射半透明介质内辐射与导热瞬态耦合换热。采用全隐格式的有限差分法离散二维瞬态微分能量方程,用辐射传递系数来表示辐射源项,结合谱带模型并采用射线踪迹法求解辐射传递系数。采用Patankar线性化方法将辐射源项及不透明边界条件线性化,并采用附加源项法处理边界条件,运用ADI方法求解名以上的线性化方程组,从而解得二维矩形介质内的瞬态温度分布。  相似文献   

12.
We present a general approach for the linearization of radiative transfer in a spherical planetary atmosphere. The approach is based on the forward-adjoint perturbation theory. In the first part we develop the theoretical background for a linearization of radiative transfer in spherical geometry. Using an operator formulation of radiative transfer allows one to derive the linearization principles in a universally valid notation. The application of the derived principles is demonstrated for a radiative transfer problem in simplified spherical geometry in the second part of this paper. Here, we calculate the derivatives of the radiance at the top of the atmosphere with respect to the absorption properties of a trace gas species in the case of a nadir-viewing satellite instrument.  相似文献   

13.
A vector radiative transfer model has been developed for a coupled atmosphere-ocean system. The radiative transfer scheme is based on the discrete ordinate and matrix operator methods. The reflection/transmission matrices and source vectors are obtained for each atmospheric or oceanic layer through the discrete ordinate solution. The vertically inhomogeneous system is constructed using the matrix operator method, which combines the radiative interaction between the layers. This radiative transfer scheme is flexible for a vertically inhomogeneous system including the oceanic layers as well as the ocean surface. Compared with the benchmark results, the computational error attributable to the radiative transfer scheme has been less than 0.1% in the case of eight discrete ordinate directions. Furthermore, increasing the number of discrete ordinate directions has produced computations with higher accuracy. Based on our radiative transfer scheme, simulations of sun glint radiation have been presented for wavelengths of 670 nm and 1.6 μm. Results of simulations have shown reasonable characteristics of the sun glint radiation such as the strongly peaked, but slightly smoothed radiation by the rough ocean surface and depolarization through multiple scattering by the aerosol-loaded atmosphere. The radiative transfer scheme of this paper has been implemented to the numerical model named Pstar as one of the OpenCLASTR/STAR radiative transfer code systems, which are widely applied to many radiative transfer problems, including the polarization effect.  相似文献   

14.
本文采用射线踪迹结合节点分析法和谱带模型,研究了漫反射不透明边界下吸收、发射、各向异性散射介质内的热辐射传递过程。考虑介质辐射能的入射和散射方向,导出漫反射、不透明边界、各向异性散射介质的辐射传递系数。在辐射平衡的情况下,考察了表面发射率和散射反照率对介质内辐射热流和温度场的影响。研究表明,介质不透明边界处存在温度跃迁现象,而且,内界面发射率越大,相应界面温度跃迁越小。  相似文献   

15.
16.
Indirect optical spectroscopy or tomography, that is, mapping of optical properties in scattering and absorption inside a medium given a set of measurements at the boundaries, is highly dependent on the radiative transfer model used to track radiative energy propagation in semi-transparent materials. In the first part of this study, a numerical tool adapted for treating radiative transfer in the frame of short-pulsed laser beam interaction with non-homogeneous matter has been presented. In this paper, it is intended to show how such numerical tools can undergo inversion through adjoint treatment or reverse differentiation.Adjoint models, as well as reverse differentiation, are used in order to allow an efficient computation of the gradient, in the unknown optical parameters space, of an objective or cost function estimating the residual between data obtained at the boundary and predictions by numerical simulations. This gradient is a crucial indication as to update, through line minimization, the set of internal optical properties of the medium.First, the theoretical background of the inverse treatments, both reverse differentiation and adjoint model, for the transient radiative transfer equation model introduced in Part I is developed. Second, different reconstruction configurations are presented. Time-dependent sampling and time filtering effects of the measurements are addressed. Image reconstructions from simulated data are achieved for material phantoms of simple geometry.  相似文献   

17.
Because the optical plane defined by the incidence and reflection direction at a cylindrical surface has a complicated relation with the local azimuthal angle and zenith angle in the traditional cylindrical coordinate system, it is difficult to deal with the specular reflective boundary condition in the solution of the traditional radiative transfer equation for cylindrical system. In this paper, a new radiative transfer equation for graded index medium in cylindrical system (RTEGCN) is derived based on a newly defined cylindrical coordinate system. In this new cylindrical coordinate system, the optical plane defined by the incidence and reflection direction is just the isometric plane of the local azimuthal angle, which facilitates the RTEGCN in dealing with cylindrical specular reflective boundaries. A least squares finite element method (LSFEM) is developed for solving radiative transfer in single and multi-layer cylindrical medium based on the discrete ordinates form of the RTEGCN. For multi-layer cylindrical medium, a radial basis function interpolation method is proposed to couple the radiative intensity at the interface between two adjacent layers. Various radiative transfer problems in both single and multi-layer cylindrical medium are tested. The results show that the present finite element approach has good accuracy to predict the radiative heat transfer in multi-layer cylindrical medium with Fresnel surfaces.  相似文献   

18.
气粒混合物辐射问题具有全场性、非灰性、耦合性等特点,准确预估高温燃气/粒子非灰辐射特性是非常重要的。本文将合并宽窄谱带K分布模础(CWNBCK)与离散坐标法(DOM)结合,开展了非灰气粒混合物辐射换热问题的模拟工作,分别验证了一维和三维情况下应用该模型的准确性,给出不同工况下的热流源项、壁面热流或辐射热流等。结果表明:该模型能够给出与SNB模型精度基本相同的结果,考虑其计算效率的提高,可以在工程实际中应用该模型计算非灰气粒混合物辐射换热。  相似文献   

19.
The radiative transfer equation can be utilized in optical tomography in situations in which the more commonly applied diffusion approximation is not valid. In this paper, an image reconstruction method based on a frequency domain radiative transfer equation is developed. The approach is based on a total variation output regularized least squares method which is solved with a Gauss–Newton algorithm. The radiative transfer equation is numerically solved with a finite element method in which both the spatial and angular discretizations are implemented in piecewise linear bases. Furthermore, the streamline diffusion modification is utilized to improve the numerical stability. The approach is tested with simulations. Reconstructions from different cases including domains with low-scattering regions are shown. The results show that the radiative transfer equation can be utilized in optical tomography and it can produce good quality images even in the presence of low-scattering regions.  相似文献   

20.
The aim of this paper is to present several features of the couplings occurring between radiative transfer and the kinetics of a moving dielectric. After determining how the velocity field affects the apparent thermo-optical properties of matter, the energy transport problem is investigated in instationary regime and the general form of transient radiative transfer equation inside a moving medium is built. Then, the model is applied to the particular case of turbulent flows: a system of two equations for mean and fluctuating radiative energies is presented, and the resolution of this system is finally carried out.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号