首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The conducting oxides solid solutions of Cd1+xIn2−2xSnxO4 (x=0.1, 0.3, 0.5, 0.7, 1.0) were prepared via a solid state reaction method. The band gaps were estimated to be 2.4 eV for x=1.0, 2.5 eV for x=0.7, 2.6 eV for x=0.5, 2.7 eV for x=0.3 and 2.8 eV for x=0.1. Oxygen could be evolved over Cd2SnO4 under the irradiation of Xe-lamp or even visible light (λ>420 nm), while the others could only work in the UV-light range. Raman showed the cation distribution in Cd2SnO4 is ordered, while that in the others is disordered. The cations distribution was proposed to be the cause of the difference in photocatalytic O2-evolution activities.  相似文献   

2.
The substitutional sites of Co2+ ions in Co2+-doped CuG1−xAlxSe2 (including CuGaSe2 where x=0 and CuAlSe2 where x=1) semiconductors are studied by analyzing the composition x dependence of optical spectral parameters reported in the previous literature for these materials. From the studies, we suggest that Co2+ occupy I-group cation site rather than III-group cation site. The suggestion is discussed.  相似文献   

3.
A series of the SmFeAsO1−xFx and GdFeAsO1−xFx (x=0.05, 0.1, 0.15, 0.2, 0.25) samples have been prepared using nano-scaled ReF3 as the fluorine resource at a relatively low temperature. The samples have been sintered at 1100 and 1120 °C for SmFeAsO1−xFx and GdFeAsO1−xFx, respectively. These temperatures are at least 50-60° lower than other previous reports. All of the so-prepared samples possess a tetragonal ZrCuSiAs-type structure. Dramatically supression of the lattice parameters and increase in Tc proved that this low temperature process was more effective to introduce fluorine into REFeAsO. Superconducting transition appeared at 39.5 K for SmFeAsO1−xFx with x=0.05 and at 22 K for GdFeAsO1−xFx with x=0.1. The highest Tc was detected to be 54 K in SmFeAsO0.8F0.2 and 40.2 K in GdFeAsO0.75F0.25. The use of the nano-scaled ReF3 compounds has improved the efficiency of the present low temperature method in synthesizing the fluorine-doped iron-based superconductors.  相似文献   

4.
X-ray diffraction experiments have been combined with Raman scattering and transmission electron microscopy data to analyze the result of rapid thermal annealing (RTA) applied to Zr films, 16 or 80 nm thick, sputtered on Si1−xGex epilayers (0≤x≤1). The C49 Zr(Si1−xGex)2 is the unique phase obtained after complete reaction. ZrSi1−xGex is formed as an intermediate phase. The C49 formation temperature Tf is lowered by the addition of Ge in the structure. Above a critical Ge composition close to x=0.33, a film microstructure change was observed. Films annealed at temperatures close to Tf are continuous and relaxed. Annealing at T>Tf leads to discontinuous films: surface roughening resulting from SiGe diffusion at film grain boundaries occurred. Grains are ultimately partially embedded in a SiGe matrix. A reduction in the lattice parameters as well as a shift of Raman lines are observed as T exceeds Tf. Both Ge non-stoichiometry and residual stress have been considered as possible origins for these changes. However, as Ge segregation has never been detected, even by using very efficient techniques, it is thought that the changes originate merely from residual stress. The C49 grains are expected to be strained under the SiGe matrix effect and shift of the Raman lines would indicate the stress is compressive. Some simple evaluations of the stress values indicate that it varies between −0.3 and −3.5 GPa for 0≤x≤1 which corresponds to a strain in the range (−0.11, −1.15%). X-ray and Raman determinations are in good agreement.  相似文献   

5.
Spectroscopic ellipsometry measurements of CuInSe2 (CIS) and CuIn1−xGaxSe2 (CIGS) over a range of Cu compositions reveal that there are important differences in electronic and optical properties between α-phase CIS/CIGS and Cu-poor CIS/CIGS. We find a reduction in the imaginary part of the dielectric function ?2 in the spectral region, 1-3 eV. This reduction can be explained in terms of the Cu-3d density of states. An increase in band gap is found for Cu-poor CIS and CIGS due to the reduction in repulsive interaction between Cu-3d and Se-4p states. We also characterize the dielectric functions of polycrystalline thin-film α-phase CuIn1−xGaxSe2 (x=0.18 and 0.36) to determine their optical properties and compare them with similar compositions of bulk polycrystalline CuIn1−xGaxSe2. The experimental results have important implications for understanding the functioning of polycrystalline optoelectronic devices.  相似文献   

6.
Microstructure, phase transformation behavior and dielectric properties of BaTi1−x(Al1/2Nb1/2)xO3 (0.01≤x≤0.40) ceramics were investigated. A high level of (Al1/2Nb1/2)4+ substitution for Ti4+ ions was not conducive to the stability of the perovskite structure and resulted in the formation of BaAl2O4. As x was increased, lattice constants and unit cell volume decreased, reached a minimum at x=0.10 and then increased. The BaTi1−x(Al1/2Nb1/2)xO3 ceramics at room temperature experienced a transformation from ferroelectric to paraelectric phase with increasing (Al1/2Nb1/2)4+ concentration. Meanwhile, permittivity of the BaTi1−x(Al1/2Nb1/2)xO3 ceramics was markedly reduced, while Q value was slightly increased. Frequency dispersion of dielectric peak was obviously increased as x was increased from 0.01 to 0.10. It is of great interest that a dielectric abnormity represented by a broad dielectric peak at 200-400 K was observed for the composition with x=0.40.  相似文献   

7.
The magnetic phase transitions and the magnetocaloric effects in MnNi1−xCoxGe (x=0.38 and 0.40) alloys were investigated. The substitution of Co for Ni in the MnNiGe antiferromagnet results in the metamagnetic transitions from antiferromagnetic to ferromagnetic state, which associates with very small thermal and magnetic hystereses. Positive and negative values of magnetic entropy changes are exhibited around the metamagnetic transition temperature and Curie temperature, respectively. The relatively large refrigerant capacity in low magnetic field along with the good reversibility suggest that MnNi1−xCoxGe (x=0.38 and 0.40) alloys are potential candidates for magnetic refrigeration.  相似文献   

8.
The author of the comment objects to the characterization and the interpretation of magnetoresistance (MR) effects observed by us in La1−xCaxMnO3 (0≤x<0.4) samples. In this reply, arguments are used to show that the samples' characterization and explanation of the MR by considering the role of the short-charge ordering (CO) regions and magnetic domains are reasonable and acceptable.  相似文献   

9.
The lattice and electronic properties for 5d-shells Ir substituted Fe-based superconductor SmOFe1−xIrxAs (x=0,0.2,0.25,0.3) are investigated based on the density functional theory (DFT) with a spin generalized gradient approximation SGGA+U method. The electronic density of states (DOS) of SmOFe1−xIrxAs is studied and well compared with the results of experimental X-ray photoemission spectroscopy (XPS). The calculation indicated that iridium substitution at the Fe site induced a modification of the FeAs4 tetrahedron and suppressed the magnetic ordering corresponding to the Fe-3d, which may be the main cause of inducing superconductivity in Ir-doped SmOFeAs system.  相似文献   

10.
A series of SmCoAsO1−xFx (with x=0, 0.05, 0.1, and 0.2) samples have been prepared by solid state reactions. X-ray powder diffraction proved that all samples can be indexed as a tetragonal ZrCuSiAs-type structure. A clear shrinkage of the lattice constants a and c with increasing F content indicated that F has been doped into the lattice. The magnetic and transport properties of the samples have been investigated. Parent SmCoAsO compound exhibited complicated magnetism including antiferromagnetism, ferromagnetism, and ferrimagnetism. For the fluorine doped samples, the antiferromagnetic Néel temperatures were almost independent of the F content and metamagnetic transitions were observed below antiferromagnetic Néel temperatures. With increasing F content, high temperature (below 142 K) ferrimagnetic state gradually changed to ferromagnetic state. In the resistivity result, metallic conduction in the region of 2-300 K and Fermi liquid behavior at low temperatures were shown in all samples. Transport properties at applied magnetic fields showed anomalies at low temperatures.  相似文献   

11.
We experimentally investigate the role of geometry on the current and current density dependencies of the intrinsic electroresistance of Sm1−xSrxMnO3 of two compositions (x=0.40 and x=0.45). It is found that for each composition, the plot of the intrinsic electroresistance versus current density for samples with different dimensions and resistances coincide whereas this does not happen in the case of the electroresistance versus the magnitude of the current. These results confirm that the current density is indeed the relevant “universal” parameter for controlling the intrinsic electroresistance of these manganites.  相似文献   

12.
We report a resonant inelastic X-ray scattering (RIXS) study on perovskite manganese oxides La1−xSrxMnO3 (x=0, 0.2, and 0.4) at Mn K-absorption edge. Hole-doping effect on the electronic excitations in the strongly correlated electron systems is elucidated by comparing with undoped LaMnO3. The scattering spectra of metallic La0.6Sr0.4MnO3 show that a salient peak appears in low energies indicating the persistence of the Mott gap. At the same time, the energy gap is partly filled by doping holes and the spectral weight shifts toward lower energies. Though the peak position of the excitations shows weak dispersion in momentum dependence, RIXS intensity changes as a function of the scattering angle (2θ), which is related to the anisotropy. Furthermore, anisotropic temperature dependence is observed in La0.8Sr0.2MnO3 which shows a metal-insulator transition associated with a ferromagnetic transition. We consider that the anisotropy in the RIXS spectra is possibly attributed to the correlation of the orbital degrees of freedom. The anisotropy is large in LaMnO3 with long-range orbital order, while it is small but finite in hole-doped La1−xSrxMnO3 which indicates persistence of short-range orbital correlation.  相似文献   

13.
We report on the enhanced electromechanical, magnetic and magnetoelectric properties of Bi1−xCaxFe1−xTixO3 solid solutions. The crystal structure of the x≈0.25 compounds are close to the rhombohedral-orthorhombic phase boundary, and the solid solutions are characterized by increased electromechanical properties due to the polarization extension near the polar-nonpolar border. The homogenous weakly ferromagnetic state is established at x>0.15 doping. The chemical doping shifts the magnetic transition close to room temperature, thus enlarging the magnetic susceptibility of the compounds. The solid solutions at the morphotropic phase boundary exhibit a nearly twofold increase in piezoelectric response, whereas the magnetoelectric coupling shows five times enhancement in comparison with the parent bismuth ferrite.  相似文献   

14.
Ordered CoxPb1−x nanowire arrays embedded in the porous anodic aluminum oxide (AAO) template have been fabricated by electrodeposition. XRD experiments prove that neither hexagonal-close-packed (hcp) nor face-centered-cubic (fcc) Co peaks are detected when the Co component (x) is below 0.91. The coercivity (Hc) and squareness (Mr/Ms) are found to increase with ferromagnetic Co component and the maximum value is at the position x=1 (pure Co nanowires). Annealing effects cause Hc and Mr/Ms increase, which surpasses the pure Co nanowires in the 0.2<x<0.6 at the annealing temperature of 700 °C. Microstructure change during annealing process is proposed to explain the magnetic properties change of samples.  相似文献   

15.
The solid solution (Ce1−xLax)PtGa has been studied through X-ray diffraction, magnetization (σ(B)), magnetic susceptibility (χ(T)), electrical resistivity (ρ(T)), magnetoresistivity (MR) and heat capacity (CP(T)) measurements. The Néel temperature (TN=3.3 K) for CePtGa is lowered upon La substitution as observed from χ(T) and ρ(T) measurements. The Kondo temperature TK as calculated from MR measurements is comparable to TN and also decreases with La substitution. The volume dependence of TK is in accordance with the compressible Kondo lattice model and a Doniach diagram of the results is presented. CP(T) measurements are presented for CePtGa, Ce0.2La0.8PtGa and LaPtGa and the results are discussed in terms of the electronic and magnetic properties. Other features of interest are anomalies in ρ(T) and CP(T) due to crystalline electric field effects and metamagnetism as observed in σ(B) studies for samples with 0≤x≤ 0.3.  相似文献   

16.
Ternary PdMnxFe1−x alloys are known to form a microinhomogeneous random mixture of PdMn and PdFe phases. The unconventional ρ(x) dependence of dc resistivity and singularities in low frequency optical conductivity spectra of alloys are described footing within the effective medium approach. The essential point of the model proposed is the anomalous role of insulating interfaces, whose proliferation at intermediate x gives rise to the observed maximum of resistivity near x?0.8.  相似文献   

17.
Al-doped ZnO powders were synthesized via solid reaction between Zn(OH)2 and Al(OH)3 and consolidated by spark plasma sintering (SPS) to fabricate fine-grained Zn1−xAlxO ceramics as a thermoelectric material. X-ray diffraction and spectrophotometer experiments revealed that Al doping into ZnO is enhanced by the present process, and consequently the SPS-processed Zn1−xAlxO samples show significantly improved electrical conductivity as compared with those prepared via mixing ZnO and Al2O3 oxide powders. Because of the combined effect of Al doping and grain refinement, the present Zn1−xAlxO ceramics show much lower thermal conductivity, which also results in an enhanced dimensionless figure of merit (ZT), than un-doped ZnO oxides prepared also by SPS.  相似文献   

18.
This work reports an experimental investigation of the ferroelectric character of magnetic phases of the orthorhombic Eu1−xY xMnO3 system at low temperatures. The temperature dependence of the polarization curves clearly reveals the existence of a re-entrant improper ferroelectric phase for x=0.2, 0.3 and 0.5. A ferroelectric phase is also stable for x=0.4, and we have no experimental evidence for its vanishing down to 7 K. From these and early results obtained using other experimental techniques, the corresponding (x,T) phase diagram was traced, yielding significant differences with regard to the ones previously reported.  相似文献   

19.
In this work we present the results obtained from the luminescence spectra and X-ray diffraction as well as transmission electron microscopy, at room temperature on crystals of NaCl1−xNaBrx:MnCl2:0.3% (x=0.00, 0.05, 0.25, and 0.50). The results suggest the existence of structures between the crystal planes (1 1 1) and (2 0 0), which may be associated with different types of Mn2+ arrangements, such as dipole complexes, octahedral and rhombohedral structures as well as other possible nanostructures that include mixtures of bromine/chlorine ions. These are responsible for the emission spectra of “as grown” crystals consisting of maxima around 500 nm and 600 nm. The green emission has been usually attributed to rhombohedral/tetrahedral symmetry sites; the present results point out that this is due to Mn–Cl/Br nanostructures with rhombohedral structure. On the other hand when the crystals are thermally quenched from 500 °C to room temperature the structures previously detected present changes. Only a red band appears around 620 nm if the samples are later annealed at 80 °C.  相似文献   

20.
We have investigated the effects of the nitrogen and indium concentrations on the photoionization cross-section and binding energy of shallow donor impurities in Ga1−xInxNyAs1−y/GaAs quantum wires. The numerical calculations are performed in the effective mass approximation, using a variational method. We observe that incorporation of small amounts of nitrogen and indium leads to significant changes of the photoionization cross-section and binding energy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号