首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Dielectric properties of polymer-liquid crystal mixture, having constituent polymer, poly-butyl methacrylate (PBMA) and liquid crystal, cholesteryl nonanoate, are reported as a function of frequency and temperature. The measurement has been done in a temperature range of 300-375 K and frequency range of 100 Hz-10 MHz. The dielectric permittivity and dielectric loss shows significant changes with the addition of polymer molecules in liquid crystal. The significant feature of composite formation is that the pure liquid crystal and polymer do not show dielectric relaxation in the frequency range covered, while the composite shows relaxation peak at a particular frequency. The optical transmittance of pure liquid crystal and composite has also been measured and compared.  相似文献   

2.
In order to study the effect of mixing dye molecules in ferroelectric liquid crystals, we have investigated two ferroelectric liquid crystal samples CS1016 and Felix 17/000 along with their mixture with Anthraquinone dye. The measurements have been made in the frequency range 100 Hz-10 MHz, with the variation of temperature from 30 to 90 °C. The dielectric behaviour of dye mixed CS1016 is quite different from that of Felix 17/000. This different behaviour has been explained by determining other parameters like distribution parameter, dielectric strength and relaxation frequency, etc. The different nature shown by two different samples has also been explained by electro-optical measurements.  相似文献   

3.
In order to study the shifting of phase transition temperature of ferroelectric liquid crystals due to addition of dye molecules, we have investigated two ferroelectric liquid crystal materials (Felix 16/030 and Felix 16/100) and their five mixtures with Anthraquinone dye (1%, 2%, 3%, 4% and 5% wt/wt). The phase transition scheme has been investigated and analyzed by results obtained from the optical transmittance and the dielectric permittivity study with variation of temperature in the range of 30 to 100 °C. Both the samples clearly show the shifting of phase transition temperature with dye concentration, especially the SmC*-SmA phase transition temperature. It is also clear from the study that SmC*-SmA phase transition phenomenon also becomes stronger with the addition of dye molecules. A theoretical explanation has also been given for shifting of phase transition temperature. The amount of shift in transition temperature agrees well as obtained from optical and dielectric studies.  相似文献   

4.
Optical observation under the polarizing microscope and DSC measurements on K3H(SeO4)2 single crystal have been carried out in the temperature range 25-200 °C. It reveals a high-temperature structural phase transition at around 110 °C. The crystal system transformed from monoclinic to trigonal. Electrical impedance measurements of K3H(SeO4)2 were performed as a function of both temperature and frequency. The electrical conduction and dielectric relaxation have been studied. The temperature dependence of electrical conductivity indicates that the sample crystal became a fast ionic conductor in the high-temperature phase. The frequency dependence of conductivity follows the Jonscher's universal dynamic law with the relation σ(ω)=σ(0)+n, where ω is the frequency of the AC field, and n is the exponent. The obtained n values decrease from 1.2 to 0.1 from the room temperature phase to fast ionic phase. The high ionic conductivity in the high-temperature phase is explained by the dynamical disordering of protons between the neighboring SeO4 groups, which provide more vacant sites in the crystal.  相似文献   

5.
ZnO thin films were fabricated using zinc chloride and zinc acetate precursors by the spray pyrolysis technique on FTO coated glass substrates. The ZnO films were grown in different deposition temperature ranges varying from 400 to 550 °C. Influences of substrate temperature and zinc precursors on crystal structure, morphology and optical property of the ZnO thin films were investigated. XRD patterns of the films deposited using chloride precursor indicate that (1 0 1) is dominant at low temperatures, while those deposited using acetate precursor show that (1 0 1) is dominant at high temperatures. SEM images show that deposition temperature and type of precursor have a strong effect on the surface morphology. Optical measurements show that ZnO films are obviously influenced by the substrate temperatures and different types of precursor solutions. It is observed that as temperature increases, transmittance decreases for ZnO films obtained using zinc chloride precursor, but the optical transmittance of ZnO films obtained using zinc acetate precursor increases as temperature increases.  相似文献   

6.
Polycrystalline sample of Ca3Nb2O8 was prepared by a high-temperature solid-state reaction technique. X-ray diffraction (XRD) analysis confirms the formation of single-phase compound of hexagonal (rhombohedral) crystal structure at room temperature. Scanning electron micrograph of the material showed uniform grain distribution on the surface of the sample. Detailed studies of dielectric properties of the compound, studied in a wide frequency range (102-106 Hz) at different temperatures (25-500 °C), exhibit a dielectric anomaly suggesting phase transition of ferroelectric-paraelectric and structural type at 300 °C. Electrical properties of the material were analyzed using a complex impedance technique. The Nyquists plot showed the presence of bulk effect in the material in the studied temperature range. Studies of electrical conductivity over a wide temperature range suggest that the compound has negative temperature coefficient of resistance behavior.  相似文献   

7.
Aluminum-doped zinc oxide (AZO) thin films have been deposited by electron beam evaporation technique on glass substrates. The structural, electrical and optical properties of AZO films have been investigated as a function of annealing temperature. It was observed that the optical properties such as transmittance, reflectance, optical band gap and refractive index of AZO films were strongly affected by annealing temperature. The transmittance values of 84% in the visible region and 97% in the NIR region were obtained for AZO film annealed at 475 °C. The room temperature electrical resistivity of 4.6×10−3 Ω cm has been obtained at the same temperature of annealing. It was found that the calculated refractive index has been affected by the packing density of the thin films, whereas, the high annealing temperature gave rise to improve the homogeneity of the films. The single-oscillator model was used to analyze the optical parameters such as the oscillator and dispersion energies.  相似文献   

8.
Sodium acid phthalate (SAP), an efficient semi-organic crystal having dimensions 17×8×2 mm3 has been grown from aqueous solution by slow evaporation technique at room temperature within the period of 2 weeks. The lattice parameters of the grown crystals were determined using single-crystal X-ray diffraction analysis. The presence of functional groups was estimated qualitatively by Fourier transform infrared (FTIR) analysis. The band gap energy was determined using optical absorption studies. The TG/DTA analysis reveals that the SAP crystal is thermally stable up to 141.6 °C. The dielectric constant and dielectric loss was studied as a function of frequency and the corresponding activation energy (Ea) has been calculated for the grown crystal. Scanning electron microscope studies enunciate the ferroelectric domain patterns of the SAP crystal. Ferroelectric property of the grown crystal was confirmed by hysteresis loop studies.  相似文献   

9.
Nanoparticles of cadmium selenide (CdSe) have been synthesized by soft chemical route using mercaptoethanol as a capping agent. X-ray diffraction and transmission electron microscope measurements show that the prepared sample belongs to sphalerite structure with the average particle size of 25 nm. The band gap of the material is found to be 2.1 eV. The photoluminescence (PL) emission spectra of the sample are measured at various excitation wavelengths. The PL spectra appear in the visible region, and the emission feature depends on the wavelength of the excitation. Impedance spectroscopy is applied to investigate the dielectric relaxation of the sample in a temperature range from 323 to 473 K and in a frequency range from 42 Hz to 1.1 MHz. The complex impedance plane plot has been analyzed by an equivalent circuit consisting of two serially connected R-CPE units, each containing a resistance (R) and a constant phase element (CPE). The dielectric relaxation of the sample is investigated in the electric modulus formalism. The temperature dependent relaxation times obey the Arrhenius law. The Havriliak–Negami model is used to investigate the dielectric relaxation mechanism in the sample. The frequency dependent conductivity spectra are found to obey the power law.  相似文献   

10.
We have successfully prepared Cu–Al–O thin films on silicon (100) and quartz substrates by radio frequency (RF) magnetron sputtering method. The as-deposited Cu–Al–O film is amorphous in nature and post-annealing treatment in argon ambience results in crystallization of the films and the formation of CuAlO2. The annealing temperature plays an important role in the surface morphology, phase constitution and preferred growth orientation of CuAlO2 phase, thus affecting the properties of the film. The film annealed at 900 °C is mainly composed of CuAlO2 phase and shows smooth surface morphology with well-defined grain boundaries, thus exhibiting the optimum optical–electrical properties with electrical resistivity being 79.7 Ω·cm at room temperature and optical transmittance being 80% in visible region. The direct optical band gaps of the films are found in the range of 3.3–3.8 eV depending on the annealing temperature.  相似文献   

11.
Single crystals of tetrathiourea mercury(II) tetrathiocyanato manganate(II); Hg(N2H4CS)4Mn(SCN)4, (TMTM) were grown by slow solvent evaporation technique. The grown crystals were confirmed by single crystal and powder X-ray diffraction analysis. The optical absorption spectrum of TMTM in a mixed solvent of acetone and water shows the near ultra-violet cut-off wavelength corresponding to the absorption maximum as 335 nm. FT-IR spectrum identifies the characteristic absorption bands of thiourea and thiocyanate in both middle and far infrared regions, which further confirm the incorporation of both the ligands in the resulting compound. The electron spin resonance spectrum of TMTM was recorded both at room temperature and −196 °C, which reveals that the Mn environment is symmetrical with respect to the NCS ligand distribution. It is also interesting to note that there is no hyperfine coupling between Mn nucleus and its free electrons at both room temperature and −196 °C. The dielectric constant as well as dielectric loss of the sample were calculated for varying frequencies under different temperatures.  相似文献   

12.
The effect of post sintering annealing on the dielectric response of (Pb1−xBax)(Yb0.5Ta0.5)O3 ceramics in the diffuse phase transition range (x=0.2) has been investigated. The samples are prepared by conventional solid-state reaction method. The samples are sintered at 1300 °C for 2 h and annealed at different temperatures (800, 900 and 1000 °C) for 8 h and at 800 °C for different time durations (8, 12 and 24 h). A significant change in the dielectric response has been observed in all the samples. The dielectric constant increases remarkably and the dielectric loss tangent decreases. The dielectric peaks of the annealed samples are observed to be more diffused with noticeable frequency dispersion compared to the as sintered sample.  相似文献   

13.
A new organic nonlinear optical material 1-(4-fluorostyryl)-4-nitrostilbene (FNS) has been synthesized and single crystals of FNS were grown using solvent evaporation solution growth technique (SESGT) by 2-butanon solvent. Single crystal x-ray diffraction analysis reveals the unit cell parameters of the grown crystal are a = 9.494(4) Å, b = 9.864(2) Å, c = 19.501(7) Å and it belongs to monoclinic system with noncentrosymmetric space group. Optical transmittance of the grown crystal has been studied by UV-Vis-NIR spectrum. The optical properties of FNS have been studied by means of optical transmittance measurements in the wavelength range of 190–1100 nm The optical constants were calculated from the optical transmittance (T) data such as refractive index (n), extinction coefficient (k) and reflectance (R). The optical band gap (Eg) of FNS is 3.27 eV with direct transition. The complex dielectric (?) constant of the grown FNS crystal was determined. The second harmonic generation (SHG) efficiency of the grown FNS crystal has been studied by using Kurtz-Perry powder technique and it shows 12 times relatively greater than KDP.  相似文献   

14.
Titanium oxide inorganic ion exchange material was synthesized by hydrolysis with water and ammonia solution. Structural feature of the synthesized titanium oxide was analyzed using X-ray diffraction, X-ray fluorescence and infrared spectrometer technique. Tentative formula of titanium oxide was determined and written as TiO2·0.58H2O. Titanium oxide films were deposited on glass substrates by means of an electron beam evaporation technique at room temperature from bulk sample. The films were annealed at 250, 350, 450, and 550 °C temperatures. Transmittance, reflectance, optical energy gap, refractive index and extinction coefficient were investigated. The transmittance values of 85% in the visible region and 88% in the near infrared region have been obtained for titanium oxide film annealed at 550 °C. Kubelka-Munk function was used to evaluate the absorption coefficient which was used to determine the optical band gap. It was found that the optical band gap increases with increasing annealing temperature whereas the refractive index and extinction coefficient decreases.  相似文献   

15.
Titanium dioxide thin films have been prepared from tetrabutyl-orthotitanate solution and methanol as a solvent by sol-gel dip coating technique. TiO2 thin films prepared using a sol-gel process have been analyzed for different annealing temperatures. Structural properties in terms of crystal structure were investigated by Raman spectroscopy. The surface morphology and composition of the films were investigated by atomic force microscopy (AFM). The optical transmittance and reflectance spectra of TiO2 thin films deposited on silicon substrate were also determined. Spectroscopic ellipsometry study was used to determine the annealing temperature effect on the optical properties and the optical gap of the TiO2 thin films. The results show that the TiO2 thin films crystallize in anatase phase between 400 and 800 °C, and into the anatase-rutile phase at 1000 °C, and further into the rutile phase at 1200 °C. We have found that the films consist of titanium dioxide nano-crystals. The AFM surface morphology results indicate that the particle size increases from 5 to 41 nm by increasing the annealing temperature. The TiO2 thin films have high transparency in the visible range. For annealing temperatures between 1000 and 1400 °C, the transmittance of the films was reduced significantly in the wavelength range of 300-800 nm due to the change of crystallite phase and composition in the films. We have demonstrated as well the decrease of the optical band gap with the increase of the annealing temperature.  相似文献   

16.
The crystal structure, the 13C NMR spectroscopy and the complex impedance have been carried out on [Cd3(SCN)2Br6(C2H9N2)2]n. Crystal structure shows a 2D polymeric network built up of two crystallographically independent cadmium atoms with two different octahedral coordinations. This compound exhibits a phase transition at (T=355±2 K) which has been characterized by differential scanning calorimetry (DSC), X-rays powder diffraction, AC conductivity and dielectric measurements. Examination of 13C CP/MAS line shapes shows indirect spin–spin coupling (14N and 13C) with a dipolar coupling constant of 1339 Hz. The AC conductivity of this compound has been carried out in the temperature range 325–376 K and the frequency range from 10−2 Hz to 10 MHz. The impedance data were well fitted to two equivalent electrical circuits. The results of the modulus study reveal the presence of two distinct relaxation processes. One, at low frequency side, is thermally activated due to the ionic conduction of the crystal and the other, at higher frequency side, gradually disappears when temperature reaches 355 K which is attributed to the localized dipoles in the crystal. Moreover, the temperature dependence of DC-conductivity in both phases follows the Arrhenius law and the frequency dependence of σ(ω,T) follows Jonscher's universal law. The near values of activation energies obtained from the conductivity data and impedance confirm that the transport is through the ion hopping mechanism.  相似文献   

17.
The growth of nonlinear optical single crystal of manganese mercury thiocyanate glycol monomethyl ether (MMTG), a Lewis base adduct of manganese mercury thiocyanate (MMTC), is reported. MMTG crystallizes in orthorhombic structure with Pca21 space group. The optical band gap energy of the sample is found to be 3.5 eV. The sample is thermally stable up to 145 °C. The grown crystal is characterized by photoluminescence, dielectric, dc conductivity, photoconductivity and SEM studies. From the photoluminescence study, the suitability of the material for blue and green light generation is confirmed. The electric and dielectric response of the grown crystal is studied as a function of temperature and the results are discussed. The dc activation energy of the sample is found to be 0.048 eV.  相似文献   

18.
We performed the synthesis of a (N-Me-3,5-di-Me-Py)(TCNQ)2 single crystal and we resolved the crystallic and molecular structure of this salt. Magnetic susceptibility measurements were performed in the temperature range 2-300 K. The results are studied with respect to two energy gaps in the magnetic excitations spectra which could signify that the Peierls dielectric phase forms in two grades.  相似文献   

19.
Na0.5Bi(0.5−x) SmxTiO3 (NBST) ceramics with x=0.05, 0.1, and 0.15 are prepared through chemical route. The X-ray diffraction studies confirmed the formation of single phase. Dielectric measurements in the temperature region ranging from room temperature (∼30 °C) to 600 °C at different frequencies (10 kHz-1 MHz) showed anomalies at 130, 306, and 474 °C (at 10 kHz frequency) for x=0.05 sample. Other samples showed only two peaks. To establish the electrical nature of these relaxations, impedance measurements are done at different temperatures and frequencies. The relaxation time, obtained from both impedance and modulus data, is found to decrease with increase in temperature. The relaxations observed are of non-Debye type. Increase in samarium content increases the activation energy for relaxation.  相似文献   

20.
Frequency and temperature dependence of dielectric parameters of a liquid crystalline compound (S)-4-(1-methylheptyloxycarbonyl)phenyl-4′-(6-pentanoyloxyhex-1-oxy)biphenyl-4-carboxylate under planar orientation of the molecules have been investigated in the frequency range 1 Hz-10 MHz. This compound possesses smectic paraelectric (SmA*), ferroelectric (SmC*) and antiferroelectric (SmCA*) phases. Dielectric spectroscopy suggests the existence of a relaxation mechanism in the SmA* phase, which behaves as a soft mode. In the SmC* phase two relaxation modes are observed. One mode continues from the SmA* phase with decreasing dielectric strength and the other has characteristics of the Goldstone mode. Two dielectric relaxation modes have been observed for the SmCA* phase. These two modes are related to the antiferroelectric ordering and the helical structure of the SmCA* phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号