首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Structures of Strong Shock Waves in Dense Plasmas   总被引:1,自引:0,他引:1       下载免费PDF全文
Structures of strong shock waves in dense plasmas are investigated via the steady-state Navier-Stokes equations and Poisson equation. The structures from nuid simulation agree with the ones from kinetic simulation. The effects of the transport coeffcients on the structures are analysed. The enhancements of the electronic heat conduction and ionic viscosity both will broaden the width of the shock fronts, and decrease the electric fields in the fronts.  相似文献   

2.
The weakly nonlinear regime of single mode ablative Rayleigh-Taylor instability is studied, with consideration of preheat effect and the width of the ablation front. The Rayleigh-Taylor linear growth rate agrees well with the direct numerical simulation. For the density perturbation, the amplitude distribution of the fundamental mode has one peak value whereas those of the second and third harmonics have two and three peak values, respectively. Harmonics generation versus wave number is also given and it is close to the result of direct numerical simulation.  相似文献   

3.
丁健  李毅  王水 《中国物理快报》2008,25(7):2554-2557
Using the two-fluid model in the case of α〉〉1 (α= β/2Q, β is the ratio of thermal pressure to magnetic pressure, and Q = me/mi ), we numerically investigate the interactions between two solitary kinetic Alfvén waves (SKAWs) and between an SKAW and a density discontinuity. The results show that the two SKAWs would remain in their original shapes and propagate at their initiating speeds, which indicates that SKAWs behave just like standard solitons. The simulation also shows that SKAWs will reflect and refract when crossing a discontinuity and propagating into a higher density region. The transmission wave is an SKAW with increasing density, and the reverberation is a disturbance with lower amplitude.  相似文献   

4.
Two-dimensional (2D) relativistic magnetosonic solitons in the negative-ion-rich plasma consisting of positive ions Ar+, negative ions SF6- and electrons are investigated in the presence of an applied magnetic field B0 and can be described by a Kadomtsev--Petviashvili (KP) equation in the weakly relativistic limit. The ratio of positive ion density to negative ion density has a marked influence on the amplitude Φm and width W of the steady-state KP soliton. The interaction law of the nontrivial solitons with rich web structure is studied by the Wronskian determinant method.  相似文献   

5.
The compressible Rayleigh-Taylor instability of accelerated ablation front is analysed in consideration of the preheat effects, and the corresponding eigen-problem is solved numerically using the fourth-order accurate two- point compact difference scheme. Both the growth rate and perturbation profiles are obtained, and the obtained growth rate is close to the results of direct numerical simulation. Our results show that the growth rate is more reduced and the cutoff wave length becomes longer as preheat increases.  相似文献   

6.
P.K. Shukla 《Physics letters. A》2009,373(20):1768-1770
It is shown that the dust ion-acoustic (DIA) and dust acoustic (DA)-like perturbations can be excited by the electron density and ion density ripples, respectively. For this purpose, we use the relevant equations for the DIA and DA-like disturbances and derive the standard Mathieu equation. The latter admits unstable solutions, demonstrating that both the DIA and DA-like mode can be driven on account of the free energy in the plasma density ripples.  相似文献   

7.
After the charge of heavy ions is considered, a Sagdeev equation is obtained for the solitary kinetic lfvén waves (SKAWs) in a low-β (me/mp « β « or mp/me » α » 1), three-component (electrons, protons, and highly charged heavy ions) plasma. Numerical results show that the charge number q of heavy ions can cause the width of the solitary structure to decrease, but increase for the maximum of electron density nem≤ 1.2 and the initial abundance of heavy ions Cb0 ≤ 0.1. The parallel phase speed of the waves increases with larger q.  相似文献   

8.
We report on the dynamical expansion of pulsed laser ablation of aluminum in ambient pressure of nitrogen using images of the expanding plasma. The plasma follows shock model at pressures of 0.1 Torr and drag model at 70 Torr, respectively, with incident laser energy of 265 mJ. The plasma expansion shows unstable boundaries at 70 Torr and is attributed to Rayleigh-Taylor instability. The growth time of Rayleigh-Taylor instability is estimated between 0.09 and 4 μs when the pressure is varied from 1 to 70 Torr. The pressure gradients at the plasma-gas interface gives rise to self-generated magnetic field and is estimated to be 26 kG at 1 Torr ambient pressure using the image of the expanding plasma near the focal spot. The varying degree of polarization of Al III transition 4s 2S1/2-4p 23/2 at 569.6 nm gives rise to anisotropic emission and is attributed to the self-generated magnetic field that results in the splitting of the energy levels and subsequent recombination of plasma leading to the population imbalance.  相似文献   

9.
The effect of Jeans term in a multicomponent self-gravitating quantum magnetoplasma is investigated employing the quantum hydrodynamic (QHD) model. The effects of quantum Bohm potential and statistical terms as well as the ambient magnetic field are also investigated on both dust and ion dynamics driven waves in this Letter. We state the conditions that can drive the system unstable in the presence of Jeans term. The limiting cases are also presented. The present work may have relevance in the dense astrophysical environments where the self-gravitating effects are expected to play a pivotal role.  相似文献   

10.
An exact ballooning mode eigen-equation is derived to study stability of axi-symmetric toroidal plasma with arbitrary aspect ratio, including the tokamak, the finite aspect ratio and the spherical torus plasmas. For comparison with the widely used ( s-α) model, an analytic exact equilibrium configuration with circular magnetic surfaces is analysed in detail. It is indicated that the (s - α) model needs to be improved for more realistic configurations.  相似文献   

11.
W. Masood  A. Mushtaq 《Physics letters. A》2008,372(23):4283-4289
Linear properties of obliquely propagating magnetosonic waves (both fast and slow) in multicomponent (electron-positron-ion (e-p-i) and dust-electron-ion (d-e-i)) quantum magnetoplasma are studied. It is found that the quantum Bohm potential term significantly changes the propagation of fast and slow magnetosonic waves in both e-p-i and d-e-i quantum plasmas. The variation of the dispersion characteristics with the increase/decrease of positron concentration in e-p-i and dust concentration in d-e-i quantum magnetoplasma is explored. Finally, the effect of angle θ (that the ambient magnetic field makes with the x-axis) on the dispersion properties of magnetosonic waves in multicomponent quantum magnetoplasma is investigated. The relevance of the present investigation to the dense astrophysical environments and microelectronic devices is also pointed out.  相似文献   

12.
Results are presented from studies of the formation of current sheets during exciting a current aligned with the X line of the 3D magnetic configuration, in the CS-3D device. Enhancement of the guide field (parallel to the X line) was directly observed for the first time, on the basis of magnetic measurements. After the current sheet formation, the guide field inside the sheet exceeds its initial value, as well as the field outside. It is convincingly demonstrated that an enhancement of the guide field is due to its transportation by plasma flows on the early stage of the sheet formation. The in-plane plasma currents, which produce the excess guide field, are comparable to the total current along the X line that initiates the sheet itself.  相似文献   

13.
Numerical method is applied to the investigation of the GAM damping rate with the finite k effects included. It is found that generally the damping rate given by the analytical method is smaller than that given by the numerical method, and the analytical damping rate has good approximation in the high q region (q 〉 4). The difference between the analytical and numerical damping rates increases with the increasing kpi. However, for the short-wavelength case (kpi = 0.2), the analytical methods are only good enough around q = 4 because of the slow convergence of Bessel function with the large variable.  相似文献   

14.
Effects of scalar nonlinearity on the generation of zonal flow by Rossby waves in shallow rotating fluid are considered. Zonal flows are generated via the action of Reynolds stress due to vector nonlinearity together with the effects of scalar nonlinearity. It is shown that the scalar nonlinearity reduces the amplitude threshold of the zonal flow instability. In addition, it increases the range of wave vectors of unstable modes subjected to the instability. The growth rate of the instability as a function of the spectrum of primary waves is calculated. The spectrum is assumed to be arbitrary with emphasizing the case of two monochromatic waves.  相似文献   

15.
New electrostatic instabilities in the plasma shock front are reported. These instabilities are driven by the electro- static field which is caused by charge separation and the parameter gradients in a plasma shock front. The linear analysis to the high frequency branch of electrostatic instabilities has been carried out and the dispersion relations are obtained numerically. There are unstable disturbing waves in both the parallel and perpendicular directions of shock propagation. The real frequencies of both unstable waves are similar to the electron electrostatic wave, and the unstable growth rate in the parallel direction is much greater than the one in the perpendicular direction. The dependence of growth rates on the electric field and parameter gradients is also presented.  相似文献   

16.
It is shown that the magnetorotational instability (MRI) can be driven in nonmagnetized plasma. In this case, in contrast to the case of strongly magnetized plasma, radial derivative of plasma rotation frequency should be positive for such a driving. The characteristic wave lengths of MRI in nonmagnetized plasma are of the same order of magnitude as those for the Weibel instability.  相似文献   

17.
A new mechanism whereby Neoclassical Tearing Modes (NTMs) can be triggered through toroidal mode coupling to a magnetic perturbation is proposed. The physical picture is the presence of a relatively small “pre-NTM” magnetic island whose frequency is modified by the perturbation, changing polarization current effects from stabilizing to destabilizing.  相似文献   

18.
于鑫  赵强 《中国物理快报》2009,26(3):310-312
Nonlinear waves in a Boussinesq fluid model which includes both the vertical and horizontal components of Coriolis force are studied by using the semi-geostrophic approximation and the method of travelling-wave solution. Taylor series expansion has been employed to isolate the characteristics of the linear Rossby waves and to identify the nonlinear shock and kink waves. The KdV-Burgers and the compound KdV-Burgers equations are derived, their shock wave and kink wave solution are also obtained.  相似文献   

19.
Ion acoustic shock waves (IASW's) are studied in an unmagnetized plasma consisting of electrons, positrons and adiabatically hot positive ions. This is done by deriving the Kortweg-deVries-Burger (KdVB) equation under the small amplitude perturbation expansion method. The dissipation is introduced by taking into account the kinematic viscosity among the plasma constituents. It is found that the strength of ion acoustic shock wave is maximum for spherical, intermediate for cylindrical, and minimum for planar geometry. It is observed that the positron concentration, ratio of ion to electron temperature, and the plasma kinematic viscosity significantly modifies the shock structure. Finally, it is found that the temporal evolution of the non-planar IASW's is quite different by comparison with the planar geometry. The relevance of the present study with regard to the dense astrophysical environments is also pointed out.  相似文献   

20.
A.P. Misra 《Physics letters. A》2008,372(42):6412-6415
The propagation of one-dimensional shock-like waves (SLWs) in a dissipative quantum magnetoplasma medium is studied. A quantum magnetohydrodynamic (QMHD) model is used to take into account the effects of quantum force associated with the Bohm potential and the pressure-like spin force for electrons. It is shown that the nonlinear evolution equation [Korteweg-de-Vries-Burger (KdVB)], which describes the dynamics of small but finite amplitude magnetosonic waves (MSWs) (where the dissipation is provided by the plasma resistivity) exhibits both oscillatory and monotonic shock-like perturbations (SLPs) by the effects of collective tunneling and spin alignment. Both the quantum and spin force significantly modify the shock-like structures and the strength of SLPs. The theoretical results could be of important for strongly magnetized astrophysical (e.g., pulsars, magnetars) plasmas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号