首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 607 毫秒
1.
Uniformly distributed PbTiO3 nanodots were successfully prepared by phase separation approach. A precursor sol film was first spin-coated on Si wafer and then spontaneously separated into two distinct phases owing to the Marangoni instability. PT nanodots with tailorable size and density were obtained after further heat treatment. X-ray diffraction analysis indicated that these nanodots showed a perovskite structure. An excellent room temperature field emission property of PbTiO3 nanodots was observed: the minimum turn-on voltage was about 5.3 V/μm; while the emission current density reached about 270 μA cm−2 at an applied field of about 9.25 V/μm.  相似文献   

2.
Aligned CNx nanotubes were fabricated by pyrolyzing ethylenediamine on p-type Si(1 1 1) substrates using iron as the catalyst. Scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectrum (XPS) and Raman spectroscopy were used to characterize the CNx nanotubes. The CNx nanotubes with the average length of 20 μm and diameters in the range of 50–100 nm have the “bamboo-like” structure and worse crystalline order. The low-field emission measurements of the CNx nanotubes indicated that 20 μA/cm2 current densities were observed at an electric field of 1.4 V/μm and 1.280 mA/cm2 were obtained at 2.54 V/μm. The CNx nanotubes exhibit better field emission properties than the carbon nanotubes and the BCN nanotubes. The emission mechanism of CNx nanotubes is also discussed.  相似文献   

3.
This paper reports the spectral properties and energy levels of Cr3+:Sc2(MoO4)3 crystal. The crystal field strength Dq, Racah parameter B and C were calculated to be 1408 cm−1, 608 cm−1 and 3054 cm−1, respectively. The absorption cross sections σα of 4A24T1 and 4A24T2 transitions were 3.74×10−19 cm2 at 499 nm and 3.21×10−19 cm2 at 710 nm, respectively. The emission cross section σe was 375×10−20 cm2 at 880 nm. Cr3+:Sc2(MoO4)3 crystal has a broad emission band with a broad FWHM of 176 nm (2179 cm−1). Therefore, Cr3+:Sc2(MoO4)3 crystal may be regarded as a potential tunable laser gain medium.  相似文献   

4.
This paper describes, nanocomposite polymer electrolyte (NCPE) based on polyvinylidenefluoride-co-hexafluoropropylene (PVdF-HFP), which comprises the novel lithium difluoro(oxalato)borate (LiDFOB). Ehtylene carbonate (EC) and diethyl carbonate (DEC) mixture was used as gelling agent and nanoparticulate TiO2 used as filler. The NCPE membranes were subjected to a.c. impedance, tensile strength, Raman studies, TG/DTA and morphological studies. 5 wt% TiO2 comprising membranes exhibited enhanced conductivity of 0.56 mS cm−1and the Young’s modulus was increased from 1.32 to 2.74 MPa. The structural change of α to β phase was confirmed by Raman studies. The thermal stability of the NCPE membrane is found to be 130 °C. Calculation of activation energy and synthesis of LiDFOB has also been presented.  相似文献   

5.
A tubular array of TiO2-nanotubes on a Ti substrate was used as a support for an Ag sputter-deposited layer intended for surface-enhanced Raman scattering (SERS) investigations. Composite samples of Ag/TiO2-nanotube/Ti were studied with the aid of scanning electron microscopy (SEM) and Auger electron spectroscopy (AES) to reveal their characteristic morphological and chemical features. Raman spectra of pyridine (as a probe molecule) were measured at different cathodic potentials ranging from −0.2 down to −1.2 V after the pyridine had been adsorbed on the TiO2-nanotube/Ti substrates covered with the Ag deposit. In addition, SERS spectra on a bulk electrochemically-roughened Ag reference substrate, were also measured.The SERS activity of the composite samples was strongly dependent on the amount of Ag deposit and, in some cases, was even higher than that for the Ag reference substrate. The SERS intensity vs. electrode potential dependences measured were interpreted in terms of the modified electronic structure of the Ag deposits due to the interaction of the Ag clusters with the TiO2-nanotube/Ti substrate.  相似文献   

6.
A simple and self-catalytic method has been developed for synthesizing finely patterned ZnO nanorods on ITO-glass substrates under a low temperature of 500 °C. The patterned ZnO nanorod arrays, a unit area is of 400 × 100 μm2, are synthesized via vapor phase transport method. The surface morphology and composition of the as-synthesized ZnO nanorods are characterized by means of scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). The mechanism of formation of ZnO nanorods is also discussed. The measurement of field emission (FE) reveals that the as-synthesized ZnO nanorods arrays have a turn-on field of 3.3 V/μm at the current density of 0.1 μA/cm2 and a low threshold field of 6.2 V/μm at the current density of 1 mA/cm2. So this approach must have a potential application of fabricating micropatterned oxide thin films used in FE-based flat panel displays.  相似文献   

7.
N-doped TiO2 nanotube arrays (NTN) were prepared by anodization and dip-calcination method. Hydrazine hydrate was used as nitrogen source. The surface morphology of samples was characterized by SEM. It showed that the mean size of inner diameter was 65 nm and wall thickness was 15 nm for NTN. The ordered TiO2 nanotube arrays on Ti substrate can sustain the impact of doping process and post-heat treatment. The atomic ratio of N/Ti was 8/25, which was calculated by EDX. Photoelectrochemical property of NTN was examined by anodic photocurrent response. Results indicated the photocurrent of NTN was nearly twice as that of non-doped TiO2 nanotube arrays (TN). Photocatalytic activity of NTN was investigated by degrading dye X-3B under visible light. As a result, 99% of X-3B was decomposed by NTN in 105 min, while that of TN was 59%.  相似文献   

8.
Ba0.9Sr0.1TiO3 (BST) thin films were deposited on fused quartz and Pt/TiN/Si3N4/Si substrates by radio frequency magnetron sputtering technique. Microstructure and chemical bonding states of the BST films annealed at 700 °C were characterized by field emission scanning electron microscopy, X-ray photoelectron spectroscopy, glancing angle X-ray diffraction and Raman spectrum. Optical constants including refractive indices, extinction coefficients and bandgap energies of the as-deposited BST film and the BST films annealed at 650, 700 and 750 °C, respectively, were determined from transmittance spectra by envelope method and Tauc relation. Dielectric constant and remnant polarization for the BST films increase with increasing annealing temperature. Leakage current density-applied voltage (JV) data indicate that the dominant conduction mechanism for all the BST capacitors is the interface-controlled Schottky emission under the conditions of 14 V < V < 30 V and −30 V < V < −14 V. Furthermore, the inequipotential JV characteristics for the BST films annealed at various temperatures are mainly attributed to the combined effects of the different thermal histories, relaxed stresses and strains, and varied Schottky barrier heights in the BST/Pt and Pt/BST interfaces.  相似文献   

9.
Tubular arrays of TiO2 nanotubes (ranging in diameter from 40 to 110 nm) on a Ti substrate were used as a support for Ag, Au or Cu deposits obtained by the sputter deposition technique, where the amount of metal varied from 0.01 to 0.2 mg/cm2. Those composite supports were intended for surface-enhanced Raman scattering (SERS) investigations. Composite samples were studied with the aid of scanning electron microscopy (SEM) and Auger electron spectroscopy (AES) to reveal their characteristic morphological and chemical features. Raman spectra of pyridine (as a probe molecule) were measured at different cathodic potentials ranging from −0.2 down to −1.2 V after the pyridine had been adsorbed on the metal-covered TiO2 nanotube/Ti substrates. In addition, SERS spectra on a bulk standard activated Ag, Au and Cu substrates were also measured. The SERS activity of the composite samples was strongly dependent on the amount of metal deposit, e.g. at and above 0.06 mg Ag/cm2, the intensity of SERS signal was even higher than that for the Ag reference substrate. The high activity of these composites is mainly a result of their specific morphology. The high SERS sensitivity on the surface morphology of the substrate made it possible to monitor very small temporal changes in the Ag metal clusters. This rearrangement was not detectable with microscopic (SEM) or microanalytical (AES) methods. The SERS activity of Au or Cu clusters was distinctly lower than those of Ag. The spectral differences exhibited by the three kinds of composites as compared to the reference metal samples are discussed.  相似文献   

10.
In this study TiO2 nanotube arrays were fabricated by potentiostatic anodization of titanium sheet. The X-ray diffraction (XRD) pattern and field emission scanning electron microscopy (FE-SEM) image indicated the TiO2 nanotube arrays were of pure anatase form and highly ordered. The properties of the photo-generated charges in the nanotube arrays were investigated by transient photovoltage (TPV) technique and surface photovoltage (SPV) technique based on lock-in amplifier with dc bias, in comparison with the commercial powder derived film. The separation processes of the photo-induced charges in the system of TiO2 nanotubes on Ti have been demonstrated to be correlated with the incident light intensity, surface trapping states, and the interfacial electric field between Ti and TiO2. The results also show that the highly ordered nanotube film could generate much stronger SPV responses under external electric field than the commercial powder derived film.  相似文献   

11.
Lead-free multi-component ceramics (Bi1−xyNa0.925−xyLi0.075)0.5BaxSryTiO3 have been prepared by an ordinary sintering technique and their structure and electrical properties have been studied. All the ceramics can be well-sintered at 1100 °C. X-ray diffraction patterns shows that Li+, Ba2+ and Sr2+ diffuse into the Bi0.5Na0.5TiO3 lattices to form a new solid solution with a pure perovskite structure, and a morphotropic phase boundary (MPB) is formed at 0.04 < x < 0.08. As compared to pure Bi0.5Na0.5TiO3 ceramic, the coercive field EC of the ceramics decreases greatly and the remanent polarization Pr of the ceramics increases significantly after the formation of the multi-component solid solution. Due to the MPB, lower EC and higher Pr, the piezoelectricity of the ceramics is greatly improved. For the ceramics with the compositions near the MPB (x = 0.04–0.08 and y = 0.02–0.04), piezoelectric coefficient d33 = 133–193 pC/N and planar electromechanical coupling factor kP = 16.2–32.1%. The depolarization temperature Td reaches a minimum value near the MPB. The temperature dependences of the ferroelectric and dielectric properties suggest that the ceramics may contain both the polar and non-polar regions at temperatures near/above Td.  相似文献   

12.
A range of manufactured nanoparticulate materials, including Ag, TiO2, Fe2O3, Al2O3, ZrO2, Si3N4, and a range of carbonaceous nanoparticulate materials: single-wall and multi-wall carbon nanotube aggregates and aggregated nanoparticles of black carbon, as well as commercial (mineral grade) chrysotile asbestos nanotube aggregates, have been rigorously characterized by transmission electron microscopy. These nanoparticulate materials ranged in primary particle sizes from roughly 3 to 150 nm (except for the nanotube materials with lengths in excess of 15 μm). Aggregate sizes ranged from 25 nm to 20 μm. Comparative cytotoxicological assessment of these nanomaterials was performed utilizing a murine (lung) macrophage cell line. Considering the chrysotile asbestos to be a positive control, and assigning it a relative cytotoxicity index of unity (1.0), relative cytotoxicity indexes were observed as follows at concentrations of 5 μg/ml: 1.6 and ∼ 0.4 for Ag and TiO2, respectively; 0.7–0.9 for the Fe2O3, Al2O3 and ZrO2, 0.4 for the Si3N4, 0.8 for the black carbon, and 0.9 to 1.1 for the carbon nanotube aggregate samples. Observations of a cytotoxic response, nearly identical to that for chrysotile asbestos, for multi-wall carbon nanotube aggregates which very closely resemble anthropogenic multi-wall carbon nanotubes in the environment, raise some concern for potential health effects, especially for long-term exposure.  相似文献   

13.
This paper is devoted to the third part of the analysis of the very weak absorption spectrum of the 18O3 isotopologue of ozone recorded by CW-Cavity Ring Down Spectroscopy between 5930 and 6900 cm−1. In the two first parts [A. Campargue, A. Liu, S. Kassi, D. Romanini, M.-R. De Backer-Barilly, A. Barbe, E. Starikova, S.A. Tashkun, Vl.G. Tyuterev, J. Mol. Spectrosc. (2009), doi: 10.1016/j.jms.2009.02.012 and E. Starikova, M.-R. De Backer-Barilly, A. Barbe, Vl.G. Tyuterev, A. Campargue, A.W.Liu, S. Kassi, J. Mol. Spectrosc. (2009) doi: 10.1016/j.jms.2009.03.013], the effective operators approach was used to model the spectrum in the 6200–6400 and 5930–6080 cm−1 regions, respectively. The analysis of the whole investigated region is completed by the present investigation of the 6490–6900 cm−1 upper range. Three sets of interacting states have been treated separately. The first one falls in the 6490–6700 cm−1 region, where 1555 rovibrational transitions were assigned to three A-type bands: 3ν2 + 5ν3, 5ν1 + ν2 + ν3 and 2ν1 + 3ν2 + 3ν3 and one B-type band: ν1 + 3ν2 + 4ν3. The corresponding line positions were reproduced with an rms deviation of 18.4 × 10−3 cm−1 by using an effective Hamiltonian (EH) model involving eight vibrational states coupled by resonance interactions. In the highest spectral region – 6700–6900 cm−1 – 389 and 183 transitions have been assigned to the ν1 + 2ν2 + 5ν3 and 4ν1 + 3ν2 + ν3 A-type bands, respectively. These very weak bands correspond to the most excited upper vibrational states observed so far in ozone. The line positions of the ν1 + 2ν2 + 5ν3 band were reproduced with an rms deviation of 7.3 × 10−3 cm−1 by using an EH involving the {(054), (026), (125)} interacting states. The coupling of the (431) upper state with the (502) dark state was needed to account for the observed line positions of the 4ν1 + 3ν2 + ν3 band (rms = 5.7 × 10−3 cm−1).The dipole transition moment parameters were determined for the different observed bands. The obtained set of parameters and the experimentally determined energy levels were used to generate a complete line list provided as Supplementary Materials.The results of the analyses of the whole 5930–6900 cm−1 spectral region were gathered and used for a comparison of the band centres to their calculated values. The agreement achieved for both 18O3 and 16O3 (average difference on the order of 1 cm−1) indicates that the used potential energy surface provides accurate predictions up to a vibrational excitation approaching 80% of the dissociation energy. The comparison of the 18O3 and 16O3 band intensities is also discussed, opening a field of questions concerning the variation of the dipole moments and resonance intensity borrowing by isotopic substitution.  相似文献   

14.
Flux pinning in melt-processed (Nd0.33Eu0.33Gd0.33)Ba2Cu3Oy “NEG-123” + 35 mol% Gd2BaCuO5 “NEG-211” (70 nm in size) composite doped by TiO3, MoO3 and Nb2O5 achieved record values. The optimum values of all three dopands were found to be around 0.1 mol%. Transmission electron microscope (TEM) analysis found clouds of <10 nm sized particles in the NEG-123 matrix, shifting the pinning particle size distribution to significantly lower values. TEM by energy dispersive X-ray spectroscopy (EDX) analysis clarified that these nanoparticles contained a significant amount of Nb, Mo, and Ti. Appearance of nanometer-sized defects correlated with a significantly improved flux pining at low and medium magnetic fields, which was particularly significant at high temperatures. In the Nb-doped sample, a record Jc value of 925 kA/cm2 at the secondary peak field (4.5 T) was achieved at 65 K, 640 kA/cm2 at zero field at 77 K, and 100 kA/cm2 at 90.2 K, the last value having been up to now considered as a good standard for REBa2Cu3Oy “RE-123” materials at 77 K. The greatly improved JcB performance in Nb/Mo/Ti doped samples can be easily translated to large-scale LRE-123 (LRE = light rare earths, Nd, Eu, Gd, Sm) blocks intended for real superconducting super-magnets applications.  相似文献   

15.
Photoinduced non-linear optical effects in large-sized (up to 25 nm) nanocrystallites (NC) of Ge-doped Bi12TiO20 (BTO:Ge) incorporated within olygoether photopolymer matrix have been studied. Photoinduced second harmonic generation (PISHG) was measured. Nd:YAG pulsed laser (λ=1.06 μm) was used as a source of photoinducing light. As a fundamental light source for the SHG and two-photon absorption, Er:LiYF4 laser (λ=2.065 μm) was used. We have found that with increasing IR pump power density, the output doubled frequency SHG signal (λ=1.03 μm) increases and achieves its maximum value at the pump power density about 0.45 GW/cm2 and NC size about 12 nm.The values of second-order optical susceptibilities were almost 20% larger than for the pure BTO NC single crystals. With decreasing temperature below 60 K, the SHG signal increases achieving maximal value at LHeT.  相似文献   

16.
TiO2/Fe2O3 core-shell nanocomposition film has been fabricated via two-step method. TiO2 nanorod arrays are synthesized by a facile hydrothermal method, and followed by Fe2O3 nanoparticles deposited on TiO2 nanorod arrays through an ordinary chemical bath deposition. The phase structures, morphologies, particle size, chemical compositions of the composites have been characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FESEM) and ultraviolet-visible (UV-vis) spectrophotometer. The results confirm that Fe2O3 nanoparticles of mean size ca. 10 nm coated on the surface of TiO2 NRs. After depositing Fe2O3, UV-vis absorption property is induces the shift to the visible-light range, the annealing temperature of 600 °C is the best condition for UV-vis absorption property of TiO2/Fe2O3 nanocomposite film, and increasing Fe content, optical activity are enhanced one by one. The photoelectrochemical (PEC) performances of the as-prepared composite nanorods are determined by measuring the photo-generated currents under illumination of UV-vis light. The TiO2 NRs modified by Fe2O3 show the photocurrent value of 1.36 mA/cm2 at 0 V vs Ag/AgCl, which is higher than those of unmodified TiO2 NRs.  相似文献   

17.
Vertically oriented TiO2 nanotube arrays were successfully produced by the anodization technique in NH4F/H3PO4 electrolyte. The structure and morphology were characterized by X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM). It is found that TiO2 nanotube arrays annealed at 500 °C containing 100% anatase phase and entirely converted into rutile at 800 °C. The response surface methodology (RSM) and Box-Behnken design were applied to find the optimal factor conditions in production of TiO2 nanotube arrays. Based on the results in preliminary experiments, we selected anodization time, anodization voltage and NH4F concentration as the key factors to investigate their effects on responses. The regression models were built by fitting the experimental results with a second-order polynomial. By using the regression models, the optimal factor conditions were obtained as follows: anodization time of 300 min; anodization voltage of 15.39 V; NH4F concentration of 0.50 M. Corresponding to the optimal factor conditions, the predicted average length and diameter of nanotube array were 1429 nm and 33 nm, respectively. Confirmation experiments using the optimized conditions were performed: TiO2 nanotube arrays were obtained with an average tube length of 1420 nm and average tube diameter of 36 nm. The experimental results are in good agreement with the predicted results.  相似文献   

18.
Focused ion beam implantation of gallium and dysprosium was used to locally insulate the near-surface two-dimensional electron gas of AlxGa1−xN/GaN heterostructures. The threshold dose for insulation was determined to be 2×1010 cm−1 for 90 keV Ga+ and 1×109 cm−1 for 200 keV Dy2+ at 4.2 K. This offers a tool not only for inter-device insulation but also for direct device fabrication. Making use of “open-T” like insulating line patterns, in-plane gate transistors have been fabricated by focused ion beam implantation. An exemplar with a geometrical channel width of 1.5 μm shows a conductance of 32 μS at 0 V gate voltage and a transconductance of around 4 μS, which is only slightly dependent on the gate voltage.  相似文献   

19.
Highly ordered TiO2 nanotube arrays with an average diameter of 230 nm, a wall thickness of 30 nm and a length of 1.8 μm were fabricated within a large domain by electrochemically anodizing of a titanium foil in a mixed solution of glycerol and NH4F aqueous electrolyte. The TiO2 nanotubes exhibit an anatase structure after annealing at 450 °C in air for 3 h. The direct photolysis (DP), photocatalytic (PC), electrocatalytic (EC) and photoelectrocatalytic (PEC) activities of the TiO2 nanotube arrays were investigated using methyl orange (MO) as the model pollutant. The degradation of MO in PC process is faster than that in DP process, which confirms the photocatalysis of TiO2 nanotube arrays. The degradation rate in PEC process is much higher than those in EC and PC processes, which demonstrates the synergetic effect between PC and EC processes. The synergetic factor is 4.1, which suggests that the synergetic effect is strong. Moreover, the stabilities of morphology, structure and photo(electro)catalytic degradation performance of the TiO2 nanotube arrays were studied in order to evaluate their applicability as photo(electro)catalysts. The photo(electro)catalytic experiments bring neither morphological nor structural modifications to the nanotube arrays. The photo(electro)catalytic degradation rates of the TiO2 nanotube arrays maintain stable in 10 cycles, which indicates that the TiO2 nanotube arrays are appropriate to be applied as photo(electro)catalysts.  相似文献   

20.
The glasses with the composition of 37.5Li2O–(25 − x)Fe2O3xNb2O5–37.5P2O5 (mol%) (x = 5,10,15) are prepared, and it is found that the addition of Nb2O5 is effective for the glass formation in the lithium iron phosphate system. The glass–ceramics consisting of Nasicon-type Li3Fe2(PO4)3 crystals with an orthorhombic structure are developed through conventional crystallization in an electric furnace, showing electrical conductivities of 3 × 10− 6 Scm− 1 at room temperature and the activation energies of 0.48 eV (x = 5) and 0.51 eV (x = 10) for Li+ ion conduction in the temperature range of 30–200 °C. A continuous wave Nd:YAG laser (wavelength: 1064 nm) with powers of 0.14–0.30 W and a scanning speed of 10 μm/s is irradiated onto the surface of the glasses, and the formation of Li3Fe2(PO4)3 crystals is confirmed from XRD analyses and micro-Raman scattering spectra. The crystallization of the precursor glasses is considered as new route for the fabrication of Li3Fe2(PO4)3 crystals being candidates for use as electrolyte materials in lithium ion secondary batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号