首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
气相色谱-电子捕获检测器同时测定硝基咪唑类药物   总被引:4,自引:0,他引:4  
建立了气相色谱-电子捕获检测器同时测定硝基咪唑类药物含量的方法.样品用磷酸盐调节pH约为8.8,乙酸乙酯提取,无水硫酸钠脱水.采用CBP-1毛细管柱分离,电子捕获检测器检测.甲硝唑、替硝唑、奥硝唑分别在0.2~15 μg/mL、5.3~53μg/mL、4.0~40μg/mL范围内与峰面积呈良好线性关系,相关系数r分别为0.9993、0.9996、0.9995.样品加标回收率在95.8%~101%之间,相对标准偏差在1.8%~3.4%之间.本法简便、快速,可用于片剂和注射液中硝基咪唑类药物含量的测定.  相似文献   

2.
建立了水中硝基苯类化合物(硝基苯、1-硝基甲苯、2-硝基甲苯、3-硝基甲苯和邻氯硝基苯)的液相微萃取-气相色谱/质谱检测方法。实验结果显示:甲苯为最佳的萃取剂。确定最佳实验条件为:甲苯体积2μL,萃取时间15 min,搅拌速度300 r/min,萃取温度45℃,溶液pH=5。在此条件下,各目标物的萃取富集倍数为30~38,线性范围为2~250μg/L,检出限为1~2μg/L,测定的相对标准偏差为5%~7%。  相似文献   

3.
提出了鸡饲料中5种硝基咪唑类药物(甲硝唑、洛硝哒唑、二甲硝唑、替硝唑和奥硝唑)的液相色谱-串联质谱分析方法。鸡饲料样品经乙酸乙酯-5g.L-1碳酸钠混合溶液提取后,取有机相蒸发至干。用0.1mol·L-1磷酸溶液溶解残余物,HLB柱固相萃取净化,所得的乙腈洗脱液经C8色谱柱为分离柱,甲醇和水混合溶液为流动相作梯度淋洗,采用正离子模式多反应监测。5种硝基咪唑类药物的线性范围均为10~500μg.L-1,检出限(3S/N)均为10μg.kg-1。加标回收率为79.4%~91.3%,批内相对标准偏差(n=6)为5.5%~13.9%,批间相对标准偏差(n=6)为6.7%~18.2%。  相似文献   

4.
建立了液相色谱-电喷雾串联质谱法(LC-ESIMS/MS)测定蜂王浆中10种硝基咪唑类药物残留的分析方法。蜂王浆样品经甲醇沉淀蛋白质,弱碱性条件下乙酸乙酯提取硝基咪唑类药物残留,Oasis(HLB)和C18固相萃取柱净化后,通过液相色谱-质谱联用技术进行检测(正离子方式,多反应监测模式),采用同位素稀释内标法或外标法进行定量。方法的线性范围为5.0~60μg/kg,相关系数大于0.999,在10、20、50μg/kg加标水平的回收率为70%~105%,相对标准偏差小于12.7%,定量下限均为10μg/kg。该方法定量准确,适用于对蜂王浆中硝基咪唑类药物残留的确证检测。  相似文献   

5.
建立超高效液相色谱-串联质谱法测定鱼虾中5种硝基咪唑类药物及其代谢物的分析方法。样品中的目标物经乙酸乙酯提取,正己烷去脂,PCX固相萃取柱净化,采用Waters ACQUITY UPLC BEH C18色谱柱分离,采用电喷雾正离子模式,多反应监测(MRM)采集数据进行定性与定量分析,外标法定量。5种硝基咪唑类药物及其代谢物在0.5~20 ng/mL质量浓度范围内有良好线性,相关系数均大于0.99,方法定量限为0.2~0.5μg/kg,不同鱼虾样品中三个加标水平的平均回收率为76.5%~106%,相对标准偏差为1.97%~13.4%(n=6)。该方法具有灵敏度高、重现性佳、回收率高、基质干扰少、高效等优点,满足鱼虾中5种硝基咪唑类药物及其代谢物的定性定量检测要求。  相似文献   

6.
Xu J  Chen J  Shao L  Li X 《色谱》2011,29(5):450-453
建立了采用超高效液相色谱-串联质谱同时检测口腔卫生用品(牙膏及漱口水)中甲硝唑、替硝唑、奥硝唑、二甲硝咪唑和洛硝唑的方法。试样以0.1%(体积分数)的甲酸水溶液/乙腈(95:5, v/v)稀释,经高速离心后过滤膜净化,采用Cloversil C18色谱柱(100 mm×2.1 mm, 3.5 μm)分离,以0.1%甲酸水溶液和乙腈为流动相梯度洗脱,质谱检测,外标法定量。5种硝基咪唑类化合物在1.0~60.0 μg/L质量浓度范围内线性关系良好,相关系数r均不小于0.9992;在10.0、20.0和100 mg/kg加标水平的平均回收率为91.5%~108%,相对标准偏差为1.14%~5.22%;方法的定量限(LOQ,以信噪比为10计)为2.0 mg/kg。该方法可靠、稳定,可满足口腔卫生用品中硝基咪唑类药物含量检测与确证的需要。  相似文献   

7.
1 引言 甲硝唑、二甲硝唑和洛硝哒唑是属于常用硝基咪唑类药物,用于预防和治疗特定病菌和原生动物疾病。由于硝基咪唑类化合物具有潜在的致癌性、诱导有机突变性,故欧盟和我国已禁止在任何动物源性食品中使用该类药物。目前测定硝基咪唑类的方法主要有气相色谱法和气相色谱-质谱联用法、高效液相色谱法和高效液相色谱-质谱联用法。本实验利用高效液相色谱-串联质谱联用测定蜂蜜中甲硝唑、二甲硝唑和洛硝哒唑3种硝基咪唑类残留。通过不同固相萃取及液相萃取比较,选择简便快捷的液相萃取方法,适合大量样品同时处理。同时比较使用了2种不同氘代内标,最终选择定量效果好的氘代二甲硝唑作为内标。  相似文献   

8.
固相微萃取-气相色谱-质谱联用测定水中酚类化合物   总被引:13,自引:0,他引:13  
赵汝松  柳仁民  崔庆新 《分析化学》2002,30(10):1240-1242
建立了固相微萃取与气相色谱-质谱联用技术(SPME-GC-MS)测定水中酚类化合物的新方法,探讨了萃取时间、搅拌速度、离子强度、pH值和解吸时间等条件对萃取量的影响。结果表明:65μm PDMS/DVB涂层对水中的酚类化合物有较好的萃取效果,用于水中酚类化合物的测定,结果满意。  相似文献   

9.
建立了一种以中空纤维液相微萃取(HF-LPME)前处理样品,利用气相色谱/质谱(GC/MS)对水中痕量氯化苄进行检测的方法。优化的实验条件为:3.0μL甲苯为萃取溶剂,在中等搅拌速率下室温萃取15 min。方法的线性范围为1~100μg/L,线性相关系数r=0.9995;检出限为0.5μg/L(S/N=3);相对标准偏差为5.37%(n=5)。用于水库水和被污染河水的测定,加标回收率分别为95.7%和93.6%,结果满意。  相似文献   

10.
单滴液相微萃取气相色谱测定水中的酞酸酯类化合物   总被引:1,自引:0,他引:1  
采用单滴液相微萃取与气相色谱测定水中的酞酸二甲酯(DMP)和酞酸二丁酯(DBP).考察了萃取溶剂、萃取时间及搅拌速度等因素对萃取结果的影响,确定最佳萃取条件为:3 mL水样放置于4 mL样品瓶中,以600 r/min速度进行磁力搅拌,萃取20 min.该方法对酞酸二甲酯和酞酸二丁酯的富集倍数为228和318,检出限为1.4和0.8 μg/L,相对标准偏差为9.4%和6.4%.对地表水、污水和海水的加标回收率DMP在94.5%~99.3%,DBP在87.0%~102%之间.  相似文献   

11.
研究了固相微萃取(SPME) 气相色谱 质谱联用(GC MS)同时测定环境水样中二嗪农、甲基对硫磷、对硫磷和水胺硫磷4种有机磷农药(OPPs)的分析方法。选择聚丙烯酸酯(PA)萃取纤维,对SPME的条件如萃取时间、萃取溶液的pH值和离子强度、解吸温度、解吸时间和GC MS的条件进行了优化。对二嗪农和水胺硫磷方法线性范围为0.001~10μg L,对甲基对硫磷和对硫磷方法线性范围为0.001~100μg L。二嗪农、甲基对硫磷、对硫磷、水胺硫磷的检出限分别为0.015,0.020,0.013和0.039μg L。分析加标自来水、矿泉水和湖水样品,回收率在89.0%~102%之间,RSD在2.1%~14.1%之间。适合于环境水样中痕量OPPs的快速分析。  相似文献   

12.
A solid-phase microextraction (SPME) method has been developed for the determination of 3 chloroacetanilide herbicides in both fresh and seawater samples. The extracted sample was analyzed by gas chromatography with mass spectrometry detection (GC-MS), and parameters affecting SPME operation including fibre type, sample pH, sample temperature, mixing speed and extraction time have been evaluated and optimized. The amount of dissolved organic matter (DOM) and the salt content both affected SPME extraction efficiency, but the presence of other competitive extractants such as organochlorine pesticides (OCPs) in the matrix showed no insignificance interference. The limit of detection (LOD) for acetochlor, metolachlor and butachlor were 1.2, 1.6 and 2.7 ng L−1, respectively. The recoveries for the herbicides ranged from 79 to 102%, and the linear dynamic range was from 10 to 1000 ng L−1. The developed method has been used to monitor herbicides contaminations in coastal water samples collected around Laizhou bay and Jiaozhou bay in Shandong peninsula, China. The concentrations of acetochlor and metolachlor ranged from undetectable to 78.5 ng L−1 and undetectable to 35.6 ng L−1, respectively. Butachlor was not observed but in only one sample and the concentration is lower than the limit of quantification (LOQ). The concentrations of the three herbicides in this study are low compared to most of the other places reported.  相似文献   

13.
Cortada C  Vidal L  Canals A 《Talanta》2011,85(5):2546-2552
A fast, simple, inexpensive, sensitive, efficient and environmental friendly direct ultrasound-assisted dispersive liquid-liquid microextraction (DUSA-DLLME) procedure has been developed to concentrate five nitroaromatic explosives from water samples prior to quantification by gas chromatography-mass spectrometry (GC-MS). An efficient ultrasonic probe has been used to radiate directly the samples producing very fine emulsions from immiscible liquids. A D-optimal design was used for optimizing the factors and to evaluate their influential upon extraction. The optimum experimental conditions were: sample volume, 10 mL; extraction time, 60 s; cycles, 0.6 s(s−1); power of ultrasound energy, 40% (70 W); and, extractant solvent (chlorobenzene) volume, 20 μL. Under the optimized experimental conditions the method presents good level of repeatability with coefficients of variation under 6% (n = 8; spiking level 10 μg L−1). Calculated calibration curves gave high level of linearity with correlation coefficient values between 0.9949 and 0.9992. Limits of detection were ranged between 0.03 and 0.91 μg L−1. Finally, the proposed method was applied to the analysis of two types of water samples, reservoir and effluent wastewater. The samples were previously analysed and confirmed free of target analytes. At 5 μg L−1 spiking level recovery values ranged between 75 and 96% for reservoir water sample showing that the matrix had a negligible effect upon extraction. However, a noticeable matrix effect (around 50% recovery) was observed for effluent wastewater sample. In order to alleviate this matrix effect, the standard addition calibration method was used for quantitative determination. This calibration method supplied recovery values ranged between 71 and 79%. The same conclusions have been obtained from an uncertainty budget evaluation study.  相似文献   

14.
A rapid and simple single-drop microextraction method (SDME) has been used to preconcentrate eighteen organochlorine pesticides (OCPs) from water samples with a complex matrix. Exposing two microlitre toluene drop to an aqueous sample contaminated with OCPs proved an excellent preconcentration method prior to analysis by gas chromatography-mass spectrometry (GC-MS). A Plackett-Burman design was used for screening and a central composite design for optimizing the significant variables in order to evaluate several possibly influential and/or interacting factors. The studied variables were drop volume, aqueous sample volume, agitation speed, ionic strength and extraction time. The optimum experimental conditions of the proposed SDME method were: 2 μL toluene microdrop exposed for 37 min to 10 mL of the aqueous sample containing 0% w/v NaCl and stirred at 380 rpm.The calculated calibration curves gave high-level linearity for all target analytes with correlation coefficients ranging between 0.9991 and 0.9999. The repeatability of the proposed method, expressed as relative standard deviation, varied between 5.9 and 9.9% (n = 8). The detection limits were in the range of 0.022-0.101 μg L−1 using GC-MS with selective ion monitoring. The LOD values obtained are able to detect these OCPs in aqueous matrices as required by EPA Method 625. Analysis of spiked effluent wastewater samples revealed that the matrix had no effect on extraction for eleven of the analytes but exerted notable effect for the other analytes.  相似文献   

15.
This paper describes a rapid and solvent-free method, microwave-assisted headspace solid-phase microextraction (MA-HS-SPME), for the extraction of six commonly used synthetic polycyclic musks: galaxolide (HHCB), tonalide (AHTN), celestolide (ADBI), traseolide (ATII), cashmeran (DPMI) and phantolide (AHMI) from water samples prior to their determination using gas chromatography-mass spectrometry (GC-MS). The effects of various extraction parameters for the quantitative extraction of these analytes by MA-HS-SPME were systematically investigated and optimized. The analytes in a 20-mL water sample (in a 40-mL sample-vial containing 4 g of NaCl) were efficiently extracted by a polydimethylsiloxane-divinylbenzene (PDMS-DVB) fiber placed in the headspace when the system was microwave irradiated at 180 W for less than 4 min. The limits of detection (LODs) ranged from 0.05 to 0.1 ng/L, and the limits of quantification (LOQs) were less than 0.2 ng/L. A preliminary analysis of wastewater samples revealed that HHCB and AHTN were the two most commonly detected synthetic polycyclic musks; using a standard addition method, their concentration were determined to range from 1.2 to 37.3 ng/L with relative standard deviation (RSD) ranging from 2 to 6%. The results obtained using this approach are better than those from the conventional oil-bath HS-SPME.  相似文献   

16.
In the present work, a method was developed and optimized aiming at the determination of anatoxin-a in environmental water samples. The method is based on the direct derivatization of the analyte by adding hexylchloroformate in the alkalinized sample (pH = 9.0). The derivatized anatoxin-a was extracted by a solid-phase microextraction (SPME) procedure, submersing a PDMS fiber in an amber vial for 20 min under magnetic stirring. GC-MS was used to identify and quantify the analyte in the SIM mode. Norcocaine was used as internal standard. The following ions were chosen for SIM analyses (quantification ions in italics): anatoxin-a: 191, 164, 293 and norcocaine: 195, 136, 168. The calibration curve showed linearity in the range of 2.5-200 ng/mL and the LOD was 2 ng/mL. This method of SPME and GC-MS analysis can be readily utilized to monitor anatoxin-a for water quality control.  相似文献   

17.
C. Giachetti 《Chromatographia》1998,48(5-6):443-449
Summary Low amounts of triethanolamine, collected in ORBO 53 tubes during air sampling, required the development of a very sensitive method for determination. After desorption and silylation reaction with trimethylsilyl imidazole/trimethyl chlorosilane, the derivative was analyzed by gas chromatography-mass spectrometry on an Ultra 2 silica capillary column in single ion monitoring mode (retention time: about 6 min). The method has a detection limit of 1–2 pg with a desorption efficiency of about 81%. Linearity of response was ascertained in the ranges 10–100 ng and 100–1000 ng. Short-term method validation was carried out by intra- and inter-day assays on three amounts for each reference calibration curve. All results satisfied the pre-defined acceptance criteria. In general, the whole procedure was easily performed and was appropriate for our needs. Breakthrough volume was appropriate for our needs. Breakthrough volume was determined on authentic samples and was about 40–60 L, using a flow rate of 1 L·min−1. The amounts of triethanolamine found in the samples ranged from 150 to 250 ng (about 2.5–4.2 μg·m−3).  相似文献   

18.
Summary A method for determination of trace amounts of the pesticides tebufenpyrad and oxadiazon, previous solid-phase microextraction (SPME), was developed using gas chromatographymass spectrometry and selected ion monitoring (GC-MS; SIM). Both pesticides were extracted with a fused silica fiber coated with 100 μm polydimethylsiloxane. The effects of pH ionic strength, sample volume, extraction and desorption times as well as extraction temperature were studied. The linear concentration range of application was 0.5–250 ng mL−1 for both compounds, with a detection limit of 0.06 ng mL−1 for tebufenpyrad and 0.02 ng mL−1 for oxadiazon. SPME-GC-MS analysis yielded good reproducibility (RSD between 7.5–10.1%). It was used to check the eventual existence of tebufenpyrad and oxadiazon above this limit in water and soil samples from Granada (Spain) as well as in human urine samples. The method validation was completed with spiked matrix samples. It can be applied as a monitoring tool for water, soil and urine in the investigation of environmental and occupational exposure to tebufenpyrad and oxadiazon.  相似文献   

19.
A new, simple, fast and high sensitive analytical method based on dispersive liquid-liquid microextraction (DLLME) followed by gas chromatography-mass spectrometry (GC-MS) for the simultaneous determination of nitro musks in surface water and wastewater samples is presented. Different parameters, such as the nature and volume of both the extraction and disperser solvents and the ionic strength and pH of the aqueous donor phase, were optimized. Under the selected conditions (injection of a mixture of 1 mL of acetone as disperser solvent and 50 μL of chloroform as extraction solvent, no salt addition and no pH adjustment) the figures of merit of the proposed DLLME-GC-MS method were evaluated. High enrichment factors, ranging between 230 and 314 depending on the target analyte, were achieved, which redound to limits of detection in the ng L−1 range (i.e., 4-33 ng L−1). The relative standard deviation (RSD) was below 5% for all the target analytes. Finally, the recoveries obtained for different water samples of diverse origin (sea, river, irrigation channel and water treatment plant) ranged between 87 and 116%, thus showing no matrix effects.  相似文献   

20.
气相色谱-质谱联用测定环境样品中三氯生   总被引:2,自引:0,他引:2  
建立了气相色谱质谱联用(GC-MS)分析自然水体中三氯生的方法,采用C(18)固相萃取柱处理水样.利用N-甲基-N(三甲基硅)-三氟乙酰胺(MSTFA)对目标物进行衍生化.GC-MS分析中以菲-D10为内标,利用内标法对三氯生进行定量.河水海水中不同浓度加标的三氯生回收率为73%~101%,相对标准偏差(RSD)在4.5%~11.3%之间,方法检出限为0.2 ng/L.该方法适用于河水海水水体中三氯生的测定.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号