首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The Schiff base enaminones (3Z)‐4‐(5‐ethylsulfonyl‐2‐hydroxyanilino)pent‐3‐en‐2‐one, C13H17NO4S, (I), and (3Z)‐4‐(5‐tert‐butyl‐2‐hydroxyanilino)pent‐3‐en‐2‐one, C15H21NO2, (II), were studied by X‐ray crystallography and density functional theory (DFT). Although the keto tautomer of these compounds is dominant, the O=C—C=C—N bond lengths are consistent with some electron delocalization and partial enol character. Both (I) and (II) are nonplanar, with the amino–phenol group canted relative to the rest of the molecule; the twist about the N(enamine)—C(aryl) bond leads to dihedral angles of 40.5 (2) and −116.7 (1)° for (I) and (II), respectively. Compound (I) has a bifurcated intramolecular hydrogen bond between the N—H group and the flanking carbonyl and hydroxy O atoms, as well as an intermolecular hydrogen bond, leading to an infinite one‐dimensional hydrogen‐bonded chain. Compound (II) has one intramolecular hydrogen bond and one intermolecular C=O...H—O hydrogen bond, and consequently also forms a one‐dimensional hydrogen‐bonded chain. The DFT‐calculated structures [in vacuo, B3LYP/6‐311G(d,p) level] for the keto tautomers compare favourably with the X‐ray crystal structures of (I) and (II), confirming the dominance of the keto tautomer. The simulations indicate that the keto tautomers are 20.55 and 18.86 kJ mol−1 lower in energy than the enol tautomers for (I) and (II), respectively.  相似文献   

2.
The dipole moments of twelve 2‐N‐substituted amino‐5‐nitro‐4‐methylpyridines ( I‐XII ) and three 2‐N‐substituted amino‐3‐nitro‐4‐methylpyridines ( XIII‐XV ) were determined in benzene. The polar aspects of intramolecular charge‐transfer and intramolecular hydrogen bonding were discussed. The interaction dipole moments, μint, were calculated for 2‐N‐alkyl(or aryl)amino‐5‐nitro‐4‐methylpyridines. Increased alkylation of amino nitrogen brought about an intensified push‐pull interaction between the amino and nitro groups. The solvent effects on the dipole moments of 2‐N‐methylamino‐5‐nitro‐4‐methyl‐( I ), 2‐N,N‐dimethylamino‐5‐nitro‐4‐methyl‐ ( II ) and 2‐N‐methylamino‐3‐nitro‐4‐methylpyridines ( XIII ) were different. Specific hydrogen bond solute‐solvent interactions increased the charge‐transfer effect in I , but it did not disrupt the intramolecular hydrogen bond in XIII.  相似文献   

3.
The time-dependent density functional theory (TDDFT) method has been carried out to study the influences of hydrogen bonding and solvent polarity on the spectral properties of 4-aminophthalimide (4AP) clusters formed with hydrogen-accepting solvents triethylamine (TEA) and dimethyl sulfoxide (DMSO). The ground- and S1-state geometry structure optimizations, hydrogen bond energies, absorption and emission spectra for both the 4AP monomer and its two triply hydrogen-bonded clusters 4AP + (TEA)3 and 4AP + (DMSO)3 have been calculated using DFT and TDDFT methods respectively with the hybrid exchange correlation functional PBE1PBE and split-valence basis set 6-311++G(d,p). It has been demonstrated that the two hydrogen bonds I and II formed with the amine group of 4AP are significantly strengthened while the hydrogen bond III formed with the imide group is slightly weakened due to the intramolecular charge transfer from the amine group to the two carbonyl groups of the 4AP molecule upon photoexcitation. In addition, the hydrogen bonds formed by 4AP with DMSO are stronger than those formed with TEA, which together with its strong polarity, should be the main reasons for the more redshifts of both the absorption and the fluorescence spectra of 4AP in solvent DMSO than those in TEA.  相似文献   

4.
Photoinduced electron transfer in two molecular triads comprised of a triarylamine donor, a d(6) metal diimine photosensitizer, and a 9,10-anthraquinone acceptor was investigated with particular focus on the influence of hydrogen-bonding solvents on the electron transfer kinetics. Photoexcitation of the ruthenium(II) and osmium(II) sensitizers of these triads leads to charge-separated states containing an oxidized triarylamine unit and a reduced anthraquinone moiety. The kinetics for formation of these charge-separated states were explored by using femtosecond transient absorption spectroscopy. Strong hydrogen bond donors such as hexafluoroisopropanol or trifluoroethanol cause a thermodynamic and kinetic stabilization of these charge-separated states that is attributed to hydrogen bonding between alcoholic solvent and reduced anthraquinone. In the ruthenium triad this effect leads to a lengthening of the lifetime of the charge-separated state from ~750 ns in dichloromethane to ~3000 ns in hexafluoroisopropanol while in the osmium triad the respective lifetime increases from ~50 to ~2000 ns between the same two solvents. In both triads the lifetime of the charge-separated state correlates with the hydrogen bond donor strength of the solvent but not with the solvent dielectric constant. These findings are relevant in the greater context of solar energy conversion in which one is interested in storing light energy in charge-separated states that are as long-lived as possible. Furthermore they are relevant for understanding proton-coupled electron transfer (PCET) reactivity of electronically excited states at a fundamental level because changes in hydrogen-bonding strength accompanying changes in redox states may be regarded as an attenuated form of PCET.  相似文献   

5.
Two polymorphs of bis(2‐carbamoylguanidinium) fluorophosphonate dihydrate, 2C2H7N4O+·FO3P2−·2H2O, are presented. Polymorph (I), crystallizing in the space group Pnma, is slightly less densely packed than polymorph (II), which crystallizes in Pbca. In (I), the fluorophosphonate anion is situated on a crystallographic mirror plane and the O atom of the water molecule is disordered over two positions, in contrast with its H atoms. The hydrogen‐bond patterns in both polymorphs share similar features. There are O—H...O and N—H...O hydrogen bonds in both structures. The water molecules donate their H atoms to the O atoms of the fluorophosphonates exclusively. The water molecules and the fluorophosphonates participate in the formation of R44(10) graph‐set motifs. These motifs extend along the a axis in each structure. The water molecules are also acceptors of either one [in (I) and (II)] or two [in (II)] N—H...O hydrogen bonds. The water molecules are significant building elements in the formation of a three‐dimensional hydrogen‐bond network in both structures. Despite these similarities, there are substantial differences between the hydrogen‐bond networks of (I) and (II). The N—H...O and O—H...O hydrogen bonds in (I) are stronger and weaker, respectively, than those in (II). Moreover, in (I), the shortest N—H...O hydrogen bonds are shorter than the shortest O—H...O hydrogen bonds, which is an unusual feature. The properties of the hydrogen‐bond network in (II) can be related to an unusually long P—O bond length for an unhydrogenated fluorophosphonate anion that is present in this structure. In both structures, the N—H...F interactions are far weaker than the N—H...O hydrogen bonds. It follows from the structure analysis that (II) seems to be thermodynamically more stable than (I).  相似文献   

6.
A series of nine tripodal tetradentate ligands based on tris(pyridyl-2-methyl)amine TPA with hydrogen bond donors R in one, two and three of the pyridine 6-positions (R = NH2 amino, L(Am-1,2,3); NHCH2(t)Bu neopentylamino, L(Np-1,2,3); NHCO(t)Bu pivaloylamido, L(Piv-1,2,3)) and TPA are used to investigate the effect of different hydrogen bonding microenvironments on electrochemical properties of their LCuCl complexes. The hydrogen bond donors are rigidly preorganised and suitably oriented for intramolecular N-H...Cl-Cu hydrogen bonds. Cyclic voltammetry studies show that the reduction potential of the Cu(II)/Cu(I) couple as a function of the ligand follows the order TPA < L(Am-n) < or approximately L(Np-n) < L(Piv-n), and that the magnitude of the effect increases with the number of hydrogen bonding groups. These trends could be explained in terms of the steric and electronic effects exerted by these groups stabilising the Cu(I) oxidation state. In fact, the X-ray structure of the air-stable [(L(Piv-3))Cu(I)Cl] complex is reported and shows elongated Cu-N and Cu-Cl bonds, presumably due to the combination of steric and electron withdrawing effects exerted by the three pivaloylamido groups. We reasoned that the strength of hydrogen bonding in the Cu(I) and Cu(II) oxidation states could differ and therefore contribute also to the aforementioned redox changes; this hypothesis is tested using IR and NMR spectroscopy. IR studies of the [(L(Piv-1,2,3))Cu(I)Cl] and [(L(Piv-1,2,3))Cu(II)Cl]+ complexes in acetonitrile show that the intramolecular N-H...Cl-Cu hydrogen bonding weakens in the order L(Piv-1) > L(Piv-2) > L(Piv-3), and that it is stronger in the Cu(I) complexes. The 1H NMR spectra of the [(L(Piv1,2,3))Cu(I)Cl] complexes are in complete agreement with the IR data, and reveal that the stability of the Cu(I) complexes to oxidation in air increases in the order L(Piv-1) < L(Piv-2) < L(Piv-3). The hydrogen bonds in the Cu(I) complexes are stronger because of the higher electron density on the Cl ligand, when compared to the Cu(II) complexes. This is consistent with ab initio MP2 calculations performed on the complexes [(L(Piv-3))Cu(I)Cl] and [(L(Piv-3))Cu(II)Cl]+. Thus, the electron density of a metal-bound ligand acting as hydrogen bond acceptor is revealed as the major factor in determining the strength of the hydrogen bonds formed. From the IR data the energies of the N-H...Cl-Cu hydrogen bonds is estimated, as is the contribution of changes in hydrogen bond strength with the oxidation state of the copper centre and number of interactions to stabilising the Cu(I) state. Some of the implications of this result in dioxygen activation chemistry are discussed.  相似文献   

7.
袁焜  刘艳芝  朱元成  张继 《物理化学学报》2008,24(11):2065-2070
气相中O3与HSO自由基之间的相互作用及其反应在大气化学中非常重要. 在DFT-B3LYP/6-311++G**和MP2/6-311++G**水平上求得O3+HSO复合物势能面上的稳定构型, B3LYP方法得到了三种构型(复合物I, II和III), 而MP2方法只能得到一种构型(复合物II). 在复合物I和III中, HSO单元中的1H原子作为质子供体, 与O3分子中的端基O原子作为质子受体相互作用, 形成红移氢键复合物; 而在复合物II中, 虽与复合物I和III中具有相同的质子供体和质子受体, 却形成了蓝移氢键复合物. B3LYP/6-311++G**水平上计算的单体间相互作用能的计算考虑了基组重叠误差(BSSE)和零点振动能(ZPVE)校正, 其值在-3.37到-4.55 kJ·mol-1之间. 采用自然键轨道理论(NBO)对单体间相互作用的本质进行了考查, 并通过分子中原子理论(AIM)分析了三种复合物中氢键的电子密度拓扑性质.  相似文献   

8.
Tartronic acid forms a hydrogen‐bonded complex, C5H5NO·C3H4O5, (I), with 2‐pyridone, while it forms acid salts, namely 3‐hydroxy­pyridinium hydrogen tartronate, (II), and 4‐hy­droxy­pyridinium hydrogen tartronate, (III), both C5H6NO+·C3H3O5, with 3‐hydroxy­pyridine and 4‐hydroxy­pyridine, respectively. In (I), the pyridone mol­ecules and the acid mol­ecules form R(8) and R(10) hydrogen‐bonded rings, respectively, around the inversion centres. In (II) and (III), the cations and anions are linked by N—H⋯O and O—H⋯O hydrogen bonds to form a hydrogen‐bonded chain. In each of (I), (II) and (III), an intermolecular hydrogen bond is formed between a carboxyl group and the hydroxyl group attached to the central C atom, and in (I), the hydroxyl group participates in an intramolecular hydrogen bond with a carbonyl group. No intermolecular hydrogen bond is formed between the carboxyl groups in (I), or between the carboxyl and carboxyl­ate groups in (II) and (III).  相似文献   

9.
The mutarotation between form I and form II of poly(cis-5-ethyl-D -proline) has been experimentally realized. A number of hydrogen-bond-forming solvents have been found effective in initiating the mutarotational process. The rate of mutarotation seems to be proportional to the acidity of the active solvent. The enthalpy of activation energy for the mutarotation is estimated from the first-order kinetics at the lower conversion by means of the Arrhenius equation to be approximately 16.7 kcal/mol. The solvent-polymer interactions are proven to be one of the important driving forces for the mutarotation. The specific site at which hydrogen bonding takes place has been determined to be the carbonyl group of the amide by infrared spectroscopic techniques. The molecular reason for the greater susceptibility of poly(cis-5-ethyl-L -proline) II to the solvent effect than poly(cis-5-ethyl-L -proline) I can be satisfactorily explained by the relatively more extended structure of form I than form II. The mechanism for the mutarotation undoubtedly involves a cis-trans isomerization of the amide bond. The conformation of the transient states during the mutarotational process is still evidently helical in nature, probably consisting of long poly(cis-5-ethylproline) I and II segments.  相似文献   

10.
Fluorescence solvatochromism of lumichrome (LC) was studied by steady-state and time-resolved fluorescence spectroscopy. The excited-state properties of LC do not show any correlation with solvent polarity, however, reasonably good correlation with solvent E(T)(30) parameter was observed. A quantitative estimation of contribution from different solvatochromic parameters, like solvent polarizability (π*), hydrogen bond donor (α), and hydrogen bond acceptor (β) ability of the solvent, was made using linear free energy relationship on the basis of Kamlet-Taft equation. The analysis reveals that hydrogen bond donating ability (acidity) of the solvent is the most important parameter that characterizes the excited-state behavior of lumichrome. Quantum mechanical calculations using density functional theory (DFT) were done to study the most stable structure and excited-state tautomerization process of LC toward the formation of isoalloxazines. Charge localization in the excited state and formation of hydrogen-bonded cluster through solvent hydrogen bond donation on the N10 atom of alloxazine moiety were predicted to be the key step toward this water-catalyzed tautomerization process.  相似文献   

11.
The five-coordinate platinum(IV) complex (nacnac)PtMe3 (nacnac- = [{(o-iPr2C6H3)NC(CH3)}2CH]-) thermally eliminates ethane and methane to produce a novel olefin(hydrido)platinum(II) complex, where the olefin is part of the nacnac-type ligand. This Pt(II) product activates hydrocarbons, including alkanes under mild conditions, as indicated by scrambling of hydrogen and deuterium between the hydrocarbon solvent and selected positions on the ligand of the platinum complex. A mechanism in which olefin insertion into the metal hydride bond opens a site to allow hydrocarbon coordination and C-H bond oxidative addition is proposed.  相似文献   

12.
The hetero-ring proton of anhydro-1,4-diphenyl-3-mercapto-s-triazolium hydroxide (I) is more highly deshielded than its 3-hydroxy analog (II). The chemical shifts of the hetero-ring proton for compounds I and II were found to be solvent dependent due to hydrogen bond formation. Two series of anhydro-1,4-diaryl-3-hydroxy-s-triazolium hydroxides have been synthesized and their NMR spectra determined. The chemical shift of the hetero-ring proton of these compounds was found to correlate with the Hammett sigma constants of the meta- and para- substituents in the aryl groups.  相似文献   

13.
Despite the similarity in the active site pockets of carbonic anhydrase (CA) isozymes I and II, the binding affinities of benzenesulfonamide inhibitors are invariably higher with CA II as compared to CA I. To explore the structural basis of this molecular recognition phenomenon, we have designed and synthesized simple benzenesulfonamide inhibitors substituted at the para position with positively charged, negatively charged, and neutral functional groups, and we have determined the affinities and X-ray crystal structures of their enzyme complexes. The para-substituents are designed to bind in the midsection of the 15 A deep active site cleft, where interactions with enzyme residues and solvent molecules are possible. We find that a para-substituted positively charged amino group is more poorly tolerated in the active site of CA I compared with CA II. In contrast, a para-substituted negatively charged carboxylate substituent is tolerated equally well in the active sites of both CA isozymes. Notably, enzyme-inhibitor affinity increases upon neutralization of inhibitor charged groups by amidation or esterification. These results inform the design of short molecular linkers connecting the benzenesulfonamide group and a para-substituted tail group in "two-prong" CA inhibitors: an optimal linker segment will be electronically neutral, yet capable of engaging in at least some hydrogen bond interactions with protein residues and/or solvent. Microcalorimetric data reveal that inhibitor binding to CA I is enthalpically less favorable and entropically more favorable than inhibitor binding to CA II. This contrasting behavior may arise in part from differences in active site desolvation and the conformational entropy of inhibitor binding to each isozyme active site.  相似文献   

14.
Diethyl 2‐[(2‐hydroxyanilino)methylidene]malonate, (I), and diethyl 2‐[(4‐hydroxyanilino)methylidene]malonate, (II), both C14H17NO5, crystallize in centrosymmetric orthorhombic and monoclinic crystal systems, respectively. Compound (I) resides on a crystallographic mirror plane and displays bifurcated intramolecular hydrogen bonding, as well as intermolecular hydrogen bonding due to the position of the hydroxy group. Compound (II) has a single intramolecular N—H...O hydrogen bond. Infinite one‐dimensional head‐to‐tail chains formed by O—H...O hydrogen bonding are present in both structures. The molecular packing is mainly influenced by the intermolecular O—H...O interactions. Additionally, C—H...O interactions crosslinking the chains are found in (II).  相似文献   

15.
The geometric structures, infrared spectra and hydrogen bond binding energies of the various hydrogen‐bonded Res?‐water complexes in states S0 and S1 have been calculated using the density functional theory (DFT) and time‐dependent density functional theory (TD‐DFT) methods, respectively. Based on the changes of the hydrogen bond lengths and binding energies as well as the spectral shifts of the vibrational mode of the hydroxyl groups, it is demonstrated that hydrogen bonds HB‐II, HB‐III and HB‐IV are strengthened while hydrogen bond HB‐I is weakened in the four singly hydrogen‐bonded Res?‐Water complexes upon photoexcitation. When the four hydrogen bonds are formed simultaneously between one resorufin anion and four water molecules in the Res?‐4Water complex, all the hydrogen bonds are weakened in both the ground and excited states compared with those in the corresponding singly hydrogen‐bonded Res?‐Water complexes. Furthermore, in complex Res?‐4Water, hydrogen bonds HB‐II and HB‐IV are strengthened while hydrogen bonds HB‐I and HB‐III are weakened after the electronic excitation. The hydrogen bond strengthening and weakening in the various hydrogen‐bonded Res?‐water complexes should be due to the redistribution of the charges among the four heteroatoms (O1‐3 and N1) within the resorufin molecule upon the optical excitation.  相似文献   

16.
In the crystal structures of the title compounds, C11H9FN2O, (I), and C13H12FNO4, (II), the molecules are joined pairwise via different hydrogen bonds and the constituent pairs are crosslinked by weak C—H...O hydrogen bonds. The basic structural motif in (I), which is partially disordered, comprises pairs of molecules arranged in an antiparallel fashion which enables C—H...N[triple‐bond]C interactions. The pairs of molecules are crosslinked by two weak C—H...O hydrogen bonds. The constituent pair in (II) is formed by intramolecular bifurcated C—H...O/O′ and combined inter‐ and intramolecular N—H...O hydrogen bonds. In both structures, F atoms form weak C—F...H—C interactions with the H atoms of the two neighbouring methyl groups, the H...F separations being 2.59/2.80 and 2.63/2.71 Å in (I) and (II), respectively. The bond orders in the molecules, estimated using the natural bond orbitals (NBO) formalism, correlate with the changes in bond lengths. Deviations from the ideal molecular geometry are explained by the concept of non‐equivalent hybrid orbitals. The existence of possible conformers of (I) and (II) is analysed by molecular calculations at the B3LYP/6–31+G** level of theory.  相似文献   

17.
The title compounds are indole alkaloids of the Iboga class. In both compounds, viz. catharanthinol methanol solvate, C20H24N2O·CH4O, (I), and di­hydro­catharanthinol mono­hydrate, C20H26N2O·H2O, (II), a nitrogen‐containing seven‐membered ring is fused to the indole system and shares two sides with a tricyclic isoquinuclidine group. The main difference between (I) and (II) is the presence of a C=C bond in the isoquinuclidine ring in (I). The presence of amine and hydroxy groups in these mol­ecules and of methanol [in (I)] or water [in (II)] solvent mol­ecules results in intra‐ and/or intermolecular hydrogen bonding.  相似文献   

18.
19.
Changes in the local environment around amide groups of poly(N-isopropylacrylamide) (PNiPA) during a solvent-induced reentrant phase separation have been investigated by infrared spectroscopy combined with quantum chemical calculations. The addition of methanol or tetrahydrofuran as a cosolvent to an aqueous solution of PNiPA causes spectral changes in the amide I regions. By preparing a dimer model compound for PNiPA, we can establish the assignment of the amide I bands for the polymer in solutions. Hydrogen-deuterium exchange experiments of the amide protons of PNiPA and its dimer models have revealed that the amide groups of PNiPA form an intramolecular C=O...H-N hydrogen bond even in a good solvent. The result has suggested that the change in the amide I envelope of PNiPA observed during the solvent-induced phase transition reflects the modification of the intramolecular C=O...H-N hydrogen bond of PNiPA as well as the variation in solvation state of the amide groups. On the basis of the assignment, we have discussed contributions of the intramolecular C=O...H-N hydrogen bond to the phase behavior of PNiPA.  相似文献   

20.
The synthesis and characterization of eight homoleptic iron(II) and ruthenium(II) complexes containing 4′-hydrazone-substituted 2,2′:6′,2″-terpyridine ligands are described. 1H NMR spectroscopic data illustrate that the coordinated ligands undergo facile rotation about the Cpyridine–Nhydrazone bond when the N atom is methylated, and hindered bond rotation when the hydrazone NH unit is available for hydrogen bonding to solvent molecules. Detailed structural studies illustrate how the flexibility of the backbone of the complexes leads to significant variation in packing. Throughout the series of solid structures, the packing is dictated by a combination of face-to-face aromatic π-stacking, edge-to-face aromatic interactions and classical and non-classical hydrogen bonding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号