首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neutral complexes of Cu(II), Ni(II), Co(II), and Zn(II) have been synthesized from the oxamide-based ligand derived from leucine and diethyloxalate. The structural features have been deduced from their microanalytical, IR, UV/Vis, mass, 1H and 13C NMR spectral data. The Co(II) and Ni(II) chelates have octahedral geometries and the Cu(II) chelate is a square-pyramidal geometry. The non-electrolytic and monomeric nature of the complexes is shown by their magnetic susceptibility and low conductance data. The biological activities of the ligand and its metal chelates against gram-positive and negative bacteria and fungi are also reported. All the compounds are antimicrobially active and show higher activity than the free ligand.  相似文献   

2.
A project related to the crystal engineering of hydrogen-bonded coordination complexes has been initiatied and some of our first results are presented here. The compounds [Mn(DMU)6](ClO4)2 (1), [Ni(DMU)6](ClO4)2 (2), [Cu(OClO3)2(DMU)4] (3) and [Zn(DMU)6](ClO4)2 (4) have all been prepared from the reaction of N,N-dimethylurea (DMU) and the appropriate hydrated metal perchlorate salt. Crystal structure determinations of the four compounds demonstrate the existence of [M(DMU)6]2+ cations and ClO4 counterions in (1), (2) and (4), whereas in (3) monodentate coordination of the perchlorate groups leads to molecules. The [M(DMU)6]2+ cations and ClO4 anions self-assemble to form a hydrogen-bonded one-dimensional (1D) architecture in (1) and different 2D hydrogen-bonded networks in (2) and (4). The hydrogen bonding functionalities on the molecules of (3) create a 2D structure. The complexes were also characterised by room-temperature effective magnetic moments and i.r. studies. The data are discussed in terms of the nature of bonding and the known structures.  相似文献   

3.
Microwave chemistry is a green chemical method that improves reaction conditions and product yields while reducing solvent amounts and reaction times. The main aim of this article is to synthesize the tetradentate N2O2 ligand [HO(Ar)CH=N–(CH2)2–N=CH(Ar)OH] and manganese(II), cobalt(II), nickel(II), and zinc(II) complexes of the type ML by classical and microwave techniques. The resulting Schiff base and its complexes are characterized by 1H NMR, infrared, elemental analysis, and electronic spectral data. The ligand and its Co(II) and Mn(II) complexes were further identified by X-ray diffraction and mass spectra to confirm the structure. The results suggest that the metal is bonded to the ligand through the phenolic oxygen and the imino nitrogen.  相似文献   

4.
Summary The reactions of manganese(II), cobalt(II) and nickel(II) acetates (1 mole) with antipyrine-4-azo--ethylcyanoacetate (HL1) and antipyrine-4-azo--acetylacetone (HL2) (1 mole) produce complexes of the M(L)2 type. K2PdCl4 (1 mole) reacts with HL1 and HL2 (1 mole) to yield complexes of the general formula PdLCl, the ligands behaving as monobasic tridentates. The electronic spectral and magnetic data show the complexes to be high-spin octahedral, whereas the palladium(II) complexes are diamagnetic square planar. The complexes were characterized by elemental analyses, conductance measurements and i.r. and electronic spectra as well as magnetic susceptibility measurements and thermal (t.g.a. and d.t.a.) analysis.Nuclear Material Authority.  相似文献   

5.
Summary MnII, NiII and CuII complexes of (1,3-bis-aminomethyl)-cyclohexane-N,N,N,N-tetrakisbenzimidazole (CDTB) have been prepared and characterized by spectral techniques. The complexes are monomeric and pseudo-octa-hedral, as evidenced by their e.p.r. spectra and analytical data. Parameters 2, 2, 2 and for CuII complexes, and the crystal field splitting parameter (10 Dq) together with the Nephelauxetic ratio (), for NiII complexes, are reported.  相似文献   

6.
Complexes of the general formula, ML2 [M = CuII, NiII, CoII and OVIV; L = 1,2,3,5,6,7,8,8a-octahydro-3-hydroxyimino-N-(4-X-phenyl)-l-phenyl-5-(phenylmethylene)-2-naphthalenecarboxamide (X = H, Me, OMe, Cl)] have been prepared and characterized on the basis of elemental analysis, magnetic moments and i.r., e.p.r. and electronic spectra. These metal complexes contain the N4 chromophore with the ligand coordinating through nitrogens of the azomethine and deprotonated anilide functions. C.v. measurements indicate that the copper(II) complexes are quasi-reversible in acetonitrile solution. Square planar and square pyramidal structures are assigned respectively to the copper(II) and oxovanadium(IV) complexes, whereas tetrahedral geometry is assigned to the nickel(II) and cobalt(II) complexes. Deprotonated anilide nitrogen is involved in coordination and the presence of an electron-donating group para to the anilide function decreases the ΔE values of the d–d transitions while the value is found to increase when electron-withdrawing groups are substituted. Line spacing in the e.p.r. spectra of the copper(II) and oxovanadium(IV) complexes increases when methyl group is para to the anilide group, and decreases when this group is replaced by methoxy or chloro. The ν(C–N) of the anilide group and the ν(C-N) of the azomethine function of the oxime metal complexes are metal-sensitive and the blue shift for the above stretching frequencies follows the order: copper(II) > oxovanadium(IV) > nickel(II) ≈ cobalt(II). This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

7.
Synthesis of volatile complexes based on -ketoimine pivalyltrifluoroacetone, C(CH3)3C(NH)CH2COCF3, is described. The general formula of the complexes is M(L)2, where M = Cu, Ni, Pd. Complexes of this kind with Ni and Pd were obtained for the first time. The Cu and Pd complexes were found to be isostructural. A comprehensive crystal-chemical study showed that all structures are molecular and built of trans-complexes. The central atom has a square plane environment. The average M-O and M-N distances are nearly equal in all compounds: 1.84 , 1.92 , and 1.98 for Ni, Cu, and Pd complexes, respectively; the mean values of the O-M-N chelate angles are 93.4°, 91.9°, and 92.7°, respectively.Original Russian Text Copyright © 2004 by I. A. Baidina, G. I. Zharkova, N. V. Pervukhina, S. A. Gromilov, and I. K. IgumenovTranslated from Zhurnal Strukturnoi Khimii, Vol. 45, No. 4, pp. 713–722, July–August, 2004.This revised version was published online in April 2005 with a corrected cover date.  相似文献   

8.
New complexes of type [M(HL)(CH3COO)(OH2)m]·nH2O (where M:Co, m = 2, n = 2; M:Ni, m = 2, n = 1.5; M:Zn, m = 0, n = 2.5 and M:Cd, m = 0, n = 0; H2L:5-bromo-N,N′-bis-(salicylidene)-o-tolidine) have been synthesized and characterized by microanalytical, IR, UV–Vis-NIR and magnetic data. Electronic spectra of Co(II) and Ni(II) complexes are characteristic for an octahedral stereochemistry. The IR spectra indicate a chelate coordination mode for mono-deprotonated Schiff base and a bidentate one for acetate ion. The thermal transformations are complex according to TG and DTA curves including dehydration, acetate decomposition and oxidative degradation of the Schiff base. The final product of decomposition is the most stable metallic oxide.  相似文献   

9.
Shortly after the experimental verification of two-photon absorption by Kaiser et al.[1] with aCaF2:Eu2+ crystal in 1961, two-photon processes have been used to create a number of chemical or physical processes including optical data storage[2], lithographic fabrication[3], and fluorescence imaging[4]. In fluorescence imaging, two-photon excitation (TPE) has developed as an importantalternative to the traditional one-photon excitation (OPE) in the fluorescence microscopy and spectroscopy[5,…  相似文献   

10.
The possibility of ?-caprolactam (CPL) to coordinate to manganese(II), cobalt(II), and nickel(II) rhodanides has been investigated. New complexes trans-[M(CPL)4(NCS)2], where M = Mn (I), Co (II), and Ni (III), have been synthesized. The complexes have been studied by chemical analysis and IR spectroscopy. According to X-ray diffraction, complexes are isostructural to each other and crystallize in monoclinic space group P21/c, Z = 2. For I: a = 6.9457(2) ?, b = 17.7751(6) 0A, c = 12.8999(4) 0A, ?? = 104.2670(10)°, V = 1543.51(8) ?3, ??calc = 1.342 g/cm3, R 1 = 0.0426. For II: a = 6.8925(2) ?, b = 17.8189(8) ?, c = 12.7278(6) ?, ?? = 104.421(2)°, V = 1513.93(11) ?3, ??calc = 1.377 g/cm3, R 1 = 0.0280. For III: a = 6.7804(2) ?, b = 18.4631(4) ?, c = 12.4841(3) ?, ?? = 105.2950(10)°, V = 1507.49(7) ?3, ??calc = 1.382 g/cm3, R 1 = 0.0273. Structures I?CIII are molecular; the metal atom in each of them coordinates four CPL molecules and two NCS groups via oxygen and nitrogen atoms, respectively.  相似文献   

11.
CoII, NiII, CuII, ZnII and CdII complexes of N,N-bis(2-{[(2-methyl-2-phenyl-1,3-dioxolan-4-yl)methyl]amino}butyl)N′,N′-dihydroxyethanediimidamide (LH2) were synthesized and characterized by elemental analyses, IR, 1H- and 13C-NMR spectra, electronic spectra, magnetic susceptibility measurements, conductivity measurements and thermogravimetric analyses (TGA). The CoII, NiII and CuII complexes of LH2 were synthesized with 1?:?2 metal ligand stoichiometry. ZnII and CdII complexes with LH2 have a metal ligand ratio of 1?:?1. The reaction of LH2 with CoII, NiII, CuII, ZnII and CdII chloride give complexes Ni(LH)2, Cu(LH)2, Zn(LH2)(Cl)2, Cd(LH2)(Cl)2, respectively.  相似文献   

12.
Reactions of M(NO3)2?·?xH2O [M?=?Co(II), Ni(II), and Cu(II)] with N,N,N′,N′-tetraalkylpyridine-2,6-dicarboxamides(O-daap) in CH3CN yield [Co(O-dmap)(NO3)2] (1), [Co(O-deap)(NO3)2] (2), [Co(O-dpap)(NO3)2] (3), [Ni(O-dmap)(H2O)3](NO3)2] (4), [Ni(O-deap)(H2O)2(NO3)](NO3)] (5), [Cu(O-deap)(NO3)2] (6), and [Cu(O-dpap)(NO3)2] (7). X-ray crystal structures of 1, 2, 4, 5, and 7 reveal that O-daap ligands coordinate tridentate to each metal, O–N–O, with nitrate playing a vital role in molecular and crystal structures of all the complexes. The coordination geometry in the two Co(II) complexes, 1 and 2, is approximately pentagonal bipyramidal with nitrate bonded in a slightly unsymmetrical bidentate chelating mode. [Ni(dmap)(H2O)3](NO3)2 (4) and [Ni(deap)(H2O)2(NO3)](NO3) (5) exhibit octahedral geometry, the former containing uncoordinated nitrate while the latter has one nitrate coordinated unidentate and the other nitrate outside the coordination sphere. The Cu(II) in [Cu(dpap)(NO3)2] (7) occupies a distorted square pyramidal geometry and is linked to two unidentate nitrates, although one nitrate is also involved in a weak interaction with the metal through its other oxygen. IR spectra and other physical studies are consistent with their crystal structural data. O-dmap?=?N,N,N′,N′-tetramethylpyridine-2,6-dicarboxamides; O-deap?=?N,N,N′,N′-tetraethylpyridine-2,6-dicarboxamides; and O-dpap?=?N,N,N′,N′-tetraisopropylpyridine-2,6-dicarboxamides.  相似文献   

13.
The tripodal tetraamine ligand N{(CH2)3NH2}{(CH2)2NH2}2 (pee), has been investigated as an asymmetrical tetraamine chelating agent for CoII, NiII, CuII, ZnII and CdII. The protonation constants for this ligand and the formation constants for its complexes have been determined potentiometrically in 0.1 M KCl at 25 °C. The successive protonation constants (log K n ) are: 10.22, 9.51, 8.78 and 1.60 (n = 1–4). One complex with formula M(pee)2+ (M = Co, Ni, Cu, Zn and Cd) is common to all five metal ions and the formation constant (log ML) is: 12.15, 14.17, 16.55, 13.35 or 9.74, respectively. In addition to the simple complexes, CoII, CuII and ZnII also give hydroxo complexes, and CuII and NiII give complexes with monoprotonated pee. [Zn(pee)](ClO4)2 and [Cd(pee)Cl](ClO4) complexes were isolated and are believed to have tetrahedral and trigonal-bipyramidal structures, respectively.  相似文献   

14.
Abstract

The coordination in aqueous solution of 4-chloro-1,2-phenylenediamine-N',N',N',N'-tetraacetic acid (4-Cl-o-PDTA) with Be(II) and with the transition metal cations cobalt(II), nickel(II) and copper(II) was reported in earlier publications.1,2 In this note a study is presented of the coordination in aqueous solution (25°C, 1 = 0.1 M in KC1) of 4-CI-o-PDTA acid with magnesium(II), calcium(II), strontium(II), barium(II), zinc(II) and cadmium(II).  相似文献   

15.
A new 1,2-diamine ligand, N,N-bis(2-hydroxyethyl)stilbenediamine (L), has been prepared by reduction of the condensation product of benzaldehyde with 2-aminoethanol with Al amalgam. Mononuclear complexes of the [CuL(H2O)]X2 type where X=Cl or AcO with CuII and PdLCl2 with palladium(II) have been prepared and characterized by elemental analysis and i.r., u.v.–vis. or 1H-n.m.r. spectroscopy.  相似文献   

16.
Divalent metal complexes of N,N′-bis(4-imidazolymethyl)etylenediamine (EMI) have been studied using potentiometric and spectroscopic techniques (UV-Vis and NMR methods) in aqueous 0.1 mol⋅L−1 KCl supporting electrolyte at 25 °C. Final models and overall stability constants for the complexes of Ca(II), Cd(II), Co(II), Cu(II), Mg(II), Mn(II), Ni(II), Pb(II) and Zn(II) have been established by potentiometry for all M(II)–EMI systems, except for Co(II)–EMI. The data revealed that EMI forms ML complexes with all M(II)–EMI systems, which is the dominant species over a wide range of pH except for the Ca(II)–EMI and Mg(II)–EMI systems. Formation of the MnHL complex was also found for Mn(II)–EMI solutions. In addition, the UV-Vis and 1H NMR results allowed us establish the coordination modes for the metal complexes between EMI with Cd(II), Cu(II), Ni(II) and Zn(II).  相似文献   

17.
Complexes [ML2] of cobalt(II), nickel(II), copper(II), zinc(II), and cadmium(II) with asymmetrically substituted (E)-3-ethyl-5-[(4-iodo-3,5-dimethyl-2H-pyrrol-2-ylidene)methyl]-2,4-dimethyl-1H-pyrrole (HL) have been prepared and characterized for the first time. The spectral properties, stability in solutions and in the solid phase at elevated temperature of the complexes have been studied. The effects of complexing metal ion and the reaction medium on the spectral luminescent properties (absorptivity, quantum yield, fluorescence lifetime, and the radiation constant) and on thermal destruction of the [ML2] complexes have been discussed.  相似文献   

18.
Mn(II), Fe(II), Co(II), Ni(II), Cu(II) and Zn(II) complexes of the type Na4[ML(H2O)2] of the ligand, 3,3′-bis[N,N-di(carboxymethyl)-aminomethyl]-o-cresol sulphonphthalein (Xylenol Orange, Na4H2L), have been synthesized and characterized by different physico-chemical (elemental analyses, solubility, electrolytic conductances, magnetic susceptibility measurements) and spectral (u.v.-vis, i.r., e.s.r., and powder X-ray diffraction) techniques for their structure determination. The data suggest 1?:?1 (M?:?L) compositions and octahedral geometries around M(II) except for Cu(II). Antifungal activity of the complexes measured against ten fungi show significant activity against Alternaria brassicicola, Alternaria solanai, Cercospora species and Helminthosporium oryzae and moderate antifungal activity against Curvularia species, Curvularia lunata, Curvularia penniseti, Colletotrichum capsici, Aspergillus niger, Aspergillus flavus Erysiphae pisi and Fusarium udum fungi.  相似文献   

19.
Stability constants of Zn2+, Cd2+, and Co2+ complexes of trimethylenediamine-N,N,N′,N′-tetraacetic acid were determined at 298.15 K and ionic strengths of 0.1, 0.5, and 1.0 by potentiometric titration. Potassium nitrate and chloride were used as supporting electrolytes. The results obtained were extrapolated to the zeroth ionic strength using an equation with one individual parameter, and the thermodynamic stability constants of the complexes were calculated. The results are compared with the corresponding data on related compounds.  相似文献   

20.
New mixed-ligand complexes, [M2(BAMP)(bipy)2][MCl4]2, M=Co+2(1), Cu+2(2), [M2(TAMEN)(bipy)2][MCl4]2, M=Fe+2(3), Co2+(4), and [Fe2(TAMEN)(bipy)2][FeCl6]2 (5), where BAMP and TAMEN stand for the Mannich bases N,N′-bis(antipyryl-4-methylene)-piperazine and N,N′-tetra(antipyryl-4-methylene)-1,2-ethane-diamine, respectively, have been obtained and characterized by elemental analyses, conductometric and magnetic susceptibility measurements at room temperature, mass spectrometry, UV-Vis, infrared, and mass spectroscopy, and 1H NMR spectra for the ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号