首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Fluid Phase Equilibria》2006,239(1):91-99
Using our previously proposed matrix method, an equation of state for hard spheres is presented, which can reproduce the exact values of the first-eight virial coefficients. This equation meets both the low density and the close-packed limits and can predicts the first order fluid–solid phase transition of hard spheres. The results obtained show that the new equation of state can correlate the simulation data of compressibility factor up to high densities better than other equations of state.The new equation of state is extended to mixtures of hard spheres and excess functions of various binary liquid mixtures are calculated using the perturbation theory of Leonard–Henderson–Barker. The results are compared with existing theoretical and experimental data and with those calculated by other hard-sphere equations of state.It is seen that the results obtained by the new equation of state is quite satisfactory compared to other equations of state for the hard spheres and mixture of hard spheres.  相似文献   

2.
An equation of state for the multicomponent fluid phase of nonattracting rigid particles of arbitrary shape is presented. The equation is a generalization of a previously presented equation of state for pure fluids of rigid particles; the approach describes the volumetric properties of a pure fluid in terms of a shape factor, zeta, which can be back calculated by scaling the volumetric properties of pure fluids to that of a hard sphere. The performance of the proposed equation is tested against mixtures of chain fluids immersed in a "monomeric" solvent of hard spheres of equal and different sizes. Extensive new Monte Carlo simulation data are presented for 19 binary mixtures of hard homonuclear tangent freely-jointed hard sphere chains (pearl-necklace) of various lengths (three to five segments), with spheres of several size ratios and at various compositions. The performance of the proposed equation is compared to the hard-sphere SAFT approach and found to be of comparable accuracy. The equation proposed is further tested for mixtures of spheres with spherocylinders. In all cases, the equation proved to be accurate and simple to use.  相似文献   

3.
An equation of state for a multicomponent mixture of nonadditive hard spheres in d dimensions is proposed. It yields a rather simple density dependence and constitutes a natural extension of the equation of state for additive hard spheres proposed by us [A. Santos, S. B. Yuste, and M. Lopez de Haro, Mol. Phys. 96, 1 (1999)]. The proposal relies on the known exact second and third virial coefficients and requires as input the compressibility factor of the one-component system. A comparison is carried out both with another recent theoretical proposal based on a similar philosophy and with the available exact results and simulation data in d=1, 2, and 3. Good general agreement with the reported values of the virial coefficients and of the compressibility factor of binary mixtures is observed, especially for high asymmetries and/or positive nonadditivities.  相似文献   

4.
丛威  陆九芳  李以圭 《化学学报》1996,54(10):966-971
本文采用微扰理论非原始模型, 以带电硬球混合物为参考体系, 考虑粒子间各种作用能(色散、静电、偶极、四极、诱导), 首次取相对介电常数为1, 拟合了12处1:1价电解质水溶液的渗透系数, 获得了成功, 得到了7种1价离子Na^+,K^+, Rb^+, Cs^+, Cl^-, Br^-, I^-的微观参数(软球直径σ和色散能常数ε/k)。计算得到的电解质水溶液渗透系数的总平均绝对偏差是0.041。这些离子的微观参数在不同体系中维持不变。计算中未引入混合参数。  相似文献   

5.
In this work we study a set of soft-sphere systems characterised by a well-defined variation of their softness. These systems represent an extension of the repulsive Lennard-Jones potential widely used in statistical mechanics of fluids. This type of soft spheres is of interest because they represent quite accurately the effective intermolecular repulsion in fluid substances and also because they exhibit interesting properties. The thermodynamics of the soft-sphere fluids is obtained via an effective hard-sphere diameter approach that leads to a compact and accurate equation of state. The virial coefficients of soft spheres are shown to follow quite simple relationships that are incorporated into the equation of state. The approach followed exhibits the rescaling of the density that produces a unique equation for all systems and temperatures. The scaling is carried through to the level of the structure of the fluids.  相似文献   

6.
A simplified hard-sphere equation of state has been developed, which meets the correct limit for close-packed conditions. It is shown that the proposed equation of state for hard spheres can represent accurately the computer simulation compressibility factor data and virial coefficients over a wide density range. The comparison of the results of the calculations using this equation, the Carnahan-Starling equation, and the two equations proposed by Iglesias-Silva and Hall, shows that the equation proposed here represents the compressibility factor data and the virial coefficients with better accuracy.  相似文献   

7.
A completely analytic perturbation theory equation of state for the freely-jointed square-well chain fluid of variable well width (1 ≤ λ ≤ 2) is developed and tested against Monte Carlo simulation data. The equation of state is based on second-order Barker and Henderson perturbation theory to calculate the thermodynamic properties of the reference monomer fluid, and on first-order Wertheim thermodynamic perturbation theory to account for the connectivity of monomers to form chains. By using a recently developed real function expression for the radial distribution function of hard spheres in perturbation theory, we obtain analytic, closed form expressions for the Helmholtz free energy and the radial distribution function of square-well monomers of any well width. This information is used as the reference fluid in the perturbation theory of Wertheim to obtain an analytic equation of state, without adjustable parameters, that leads to good predictions of the compressibility factors and residual internal energies for 4-mer, 8-mer and 16-mer square-well fluids when compared with the simulation results. Further, very good results are obtained when this equation of state with temperature-independent parameters is used to correlate the vapor pressures and critical points of the linear alkanes from methane to n-decane.  相似文献   

8.
Virial coefficients up to the seventh are calculated for pair potentials depending on inverse powers of separation, for inverse powers from 5 to 80. Unlike the limiting (infinite inverse power) hard-sphere potential, some virial coefficients for finite inverse power potentials are found to be negative. This makes resummation of the virial series for general inverse power potentials more difficult than that for hard spheres, and some alternative resummation methods are presented and compared. A general equation of state is proposed for fluids of particles interacting through inverse power pair potentials, for inverse powers greater than about 10. This includes the "molecular" inverse power of 12, for which the current results support and extend the results of previous studies.  相似文献   

9.
Properties of the liquid-vapor interface of square-well fluids with ranges of interaction lambda=1.5, 2.0, and 3.0 are obtained by Monte Carlo simulations and from square-gradient theories that combine the Carnahan-Starling equation of state for hard spheres with the second and third virial coefficients. The predicted surface tensions show good agreement with the simulation results for lambda=2 and for lambda=3 in a temperature range reasonably close to the critical point, 0.8相似文献   

10.
We have calculated virial coefficients up to seventh order for the isotropic phases of a variety of fluids composed of hard aspherical particles. The models studied were hard spheroids, hard spherocylinders, and truncated hard spheres, and results are obtained for a variety of length-to-width ratios. We compare the predicted virial equations of state with those determined by simulation. We also use our data to calculate the coefficients of the y expansion [B. Barboy and W. M. Gelbart, J. Chem. Phys. 71, 3053 (1979)] and to study its convergence properties. Finally, we use our data to estimate the radius of convergence of the virial series for these aspherical particles. For fairly spherical particles, we estimate the radius of convergence to be similar to that of the density of closest packing. For more anisotropic particles, however, the radius of convergence decreases with increased anisotropy and is considerably less than the close-packed density.  相似文献   

11.
Computer simulations have been performed for fluids with van der Waals potential, that is, hard spheres with attractive inverse power tails, to determine the equation of state and the excess energy. On the other hand, the first- and second-order perturbative contributions to the energy and the zero- and first-order perturbative contributions to the compressibility factor have been determined too from Monte Carlo simulations performed on the reference hard-sphere system. The aim was to test the reliability of this "exact" perturbation theory. It has been found that the results obtained from the Monte Carlo perturbation theory for these two thermodynamic properties agree well with the direct Monte Carlo simulations. Moreover, it has been found that results from the Barker-Henderson [J. Chem. Phys. 47, 2856 (1967)] perturbation theory are in good agreement with those from the exact perturbation theory.  相似文献   

12.
Nordholm, S., Greberg, H. and Penfold, R., 1991. On statistical mechanical equations of state for simple fluids. Effective hard spheres and quantum corrections. Fluid Phase Equilibria, 90: 307-332.

A comparison is made of the mean field generalised van der Waals theory, based on a variationally determined hard sphere diameter, with the recent equation of state proposed by Song and Mason incorporating a temperature-dependent hard sphere diameter and correlation effects through the second virial coefficient. The simple cell theory ansatz of the former is less accurate but permits a wide range of applications including the estimation of quantum effects on the bulk properties of light fluids at low temperatures. Results for the critical parameters of 3He, 4He, H2, Ne, CH4 and Ar are examined. The relevance to the corresponding theory of non-uniform fluids is noted.  相似文献   


13.
Performance of the SAFT-VR equation of state developed for the hard sphere based simple fluids, namely the square-well, Sutherland and Yukawa fluids, is examined by comparing its results with simulation data and an augmented van der Waals (vdW) equation based on a Yukawa (Y) reference. Its shown that both for the equilibrium vapor-liquid data and data along selected isotherms in the liquid and supercritical fluid phases the vdW(Y) equation provides better results, particularly when going to lower temperatures.  相似文献   

14.
Abstract

A simple expression to calculate the shape factor of hard bodies is proposed. Introducing this factor in the Boublik equation of state, very good results are obtained for hard dumbells and more complicated systems of linear homonuclear hard fused spheres. Agreement with available Monte Carlo results are also satisfactory enough for heteronuclear molecules. Furthermore, the new expression is reduced to the classical shape factor for hard convex bodies and provides a common basis to manage to concave and convex hard bodies.  相似文献   

15.
16.
This work proposes a new equation of state (EOS) based on molecular theory for the prediction of thermodynamic properties of real fluids. The new EOS uses a novel repulsive term, which gives the correct hard sphere close packed limit and yields accurate values for hard sphere and hard chain virial coefficients. The pressure obtained from this repulsive term is corrected by a combination of van der Waals and Dieterici potentials. No empirical temperature functionality of the parameters has been introduced at this stage. The novel EOS predicts the experimental volumetric data of different compounds and their mixtures better than the successful EOS of Peng and Robinson. The prediction of vapor pressures is only slightly less accurate than the results obtained with the Peng-Robinson equation that is designed for these purposes. The theoretically based parameters of the new EOS make its predictions more reliable than those obtained from purely empirical forms.  相似文献   

17.
A new two-parameter model based on the perturbation of a hard-sphere reference has been developed to correlate the activity coefficients of several amino acids and simple peptides in aqueous solutions. The hard-sphere equation of state used as the reference in the model was proposed recently by Ghotbi and Vera. The perturbation terms coupled with the reference hard-sphere equation of state are attributed to the dispersion forces and the dipole–dipole interactions. The Lennard-Jones and Keesom potential functions are used to represent the dispersion and dipole–dipole interactions, respectively. The results of the new model are compared with those obtained by other models. It is shown that the new model can more accurately correlate the activity coefficients of amino acids and peptides in comparison with the other available models in the literature. The model was also used to correlate the solubility of several amino acids in aqueous solutions. The results show that the model can accurately correlate the solubility of the experimental data over a wide range of temperatures with only two adjustable parameters. New values for Gibbs free energy change, Δg, and enthalpy change, Δh, of the solute, i.e., amino acid for transferring one mole of solute from a saturated solution to a hypothetical aqueous solution with an activity of one molal at temperature 298.15 K are also reported.  相似文献   

18.
The problem of calculating the thermodynamic properties of two-dimensional semiclassical hard-body fluids is studied. Explicit expressions are given for the first-order quantum corrections to the free energy, equation of state, and virial coefficients. The numerical results are calculated for the planar hard dumbbell fluid. Significant features are the increase in quantum corrections with increasing eta and increasing L*=L/sigma(0).  相似文献   

19.
A novel theory of an equation of state based on excluded volume and formulated in two preceding papers for gases and gaseous mixtures is extended to the entire density range by considering higher (beginning from the third) approximations of the theory. The algorithm of constructing higher approximations is elaborated. Equations of state are deduced using the requirement of maximum simplicity and contain a single free parameter to be chosen by reason of convenience or simplicity or to be used as a fitting parameter with respect to the computer simulation database. In this way, precise equations of state are derived for the hard-sphere fluid in the entire density range. On the side, the theory reproduces most known earlier equations of state for hard spheres and determines their place in the hierarchy of approximations. Equations of state for van der Waals fluids are also presented, and their critical parameters are estimated.  相似文献   

20.
An approximate theory of ionic solutions is presented and applied to a model system of hard spheres surrounded by a square well potential with charges located at the centers. Virial osmotic coefficients are calculated and compared to solutions of the hypernetted chain equation and to experimental data of alkali halide salts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号