首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The relative intensities of silver emission lines from Grimm glow discharge plasmas were investigated in the wavelength range from 160 to 600 nm when using different plasma gases. It was characteristic of the plasma excitation that the spectral patterns were strongly dependent on the nature of the plasma gas employed. Intense emission lines of silver ion were observed when argonhelium mixed gases were employed as the plasma gas. Selective excitation of the ionic lines could be principally attributed to the charge transfer collisions between silver atoms and helium ions.  相似文献   

2.
Amorphous ultrafine tin-containing organic thin films have been prepared by means of radio frequency (RF) glow-discharge plasma polymerization of tetrabutyltin (TBT). After being annealed, the films turned into ultrafine SnOx thin films, which possessed high gas sensitivity. The influences of the thermal annealing process on the film's composition, microstructure, and gas sensitivity to such reductive gases as EtOH, H 2 , CH 4 , and CO were investigated, and the effects of doping silver into the film on its gas sensitivity were also discussed in detail. By doping with Ag, the sensitivity and selectivity of the film obviously increased, the optimum operating temperature decreased, and the film color apparently changed. Based on these facts, the catalysis mechanism of doped Ag is addressed.  相似文献   

3.
The occurrence of charge transfer and Penning process in glow discharge atomic emission sources can have a profound effect on the specific and overall spectral emission line characteristics of analyte species in these sources. A detailed spectral illustration of several of these effects is presented in this study for Cu, Zn, Ag and Cd with a particular focus on the ionic emission characteristics (i.e. II lines) of these elements. Charge transfer and Penning processes in glow discharge devices are driven by ionic and metastable species generated from the filler gas. Comparison of spectra obtained utilizing different filler gases is particularly effective for revealing the unique and specific excitation pathways for the analyte ions. Detailed high resolution spectra are presented and compared for Cu and Zn (brass) with Ar, Ne or He filler gases and for Ag and Cd with Ar or He as the filler gas illustrating several charge transfer and Penning processes. Unambiguous identification of spectral lines for specific transitions was facilitated by the acquisition of all spectral data utilizing a UV–visible Fourier transform spectrometer. This spectrometer provided complete and continuous coverage of the spectral region from 200 to 650 nm and allowed spectral lines to be identified with an accuracy of 1–2 pm.  相似文献   

4.
We report the fabrication of nano silver coated patterned silica thin film by sol–gel based soft lithography technique. Initially, silica gel film on soda lime silica glass was prepared by dipping technique from a silica sol of moderate silica concentration. A PolydimethylSiloxane elastomeric stamp containing the negative replica of the patterns of commercially available compact disc was used for embossing the film and the embossed film was cured up to 450 °C in pure oxygen atmosphere for oxide film. Finally, a precursor solution of AgNO3 in water containing polyvinyl alcohol as an organic binder was made and used for coating on the patterned silica film by dipping technique and cured the sample up to 450 °C in reducing gas atmosphere to obtain nano silver layer. The formation of only cubic silver (~4.0 nm) and both cubic silver (~5.2 nm) and silver oxide (~3.6 nm) crystallites at 350 and 450 °C film curing temperatures respectively were confirmed by XRD measurements. The % of nano silver metal and silver oxide were 75.4 and 24.6 respectively. The nano-structured surface feature was visualized by FESEM whereas AFM revealed the high fidelity grating structure of the films. Presence of both spherical and rectangular structure (aspect ratio, 2.37) of nano silver/silver oxide was confirmed by TEM. The films were also characterized by UV–Vis spectral study. The patterned film may find application in chemical sensor devices.  相似文献   

5.
The intensity of spectra emitted by hollow copper cathodes with and without the superposition of 2450-MHz microwaves was studied under different operating conditions with argon as the filler gas. The hollow-cathode discharge was operated at 25–200 mA, with argon pressures ranging from 166 to 690 Pa. The intensities of the copper spectral lines are usually higher in the presence of microwaves, whereas the argon lines are weaker. The differences in the copper spectral lines with and without microwaves increase with increasing pressure of the filler gas and decreasing current. Analogous conclusions were reached for aqueous solutions of gold and silver ions placed in the cathode cavity and dried prior to discharge. The suitability of the method for improving the detection limits obtainable with the hollow-cathode discharge could thus be demonstrated.  相似文献   

6.
SnO2 nanocrystalline material was prepared with a sol-gel process and thin films of the nanocrystalline SnO2 were coated on the surface of bent optical fiber cores for gas sensing. The UV/vis absorption spectrometry of the porous SnO2 coating on the surface of the bent optical fiber core exposed to reducing gases was investigated with a fiber optical spectrometric method. The SnO2 film causes optical absorption signal in UV region with peak absorption wavelength at around 320 nm when contacting H2-N2 samples at high temperatures. This SnO2 thin film does not respond to other reducing gases, such as CO, CH4 and other hydrocarbons, at high temperatures within the tested temperature range from 300 °C to 800 °C. The response of the sensing probe is fast (within seconds). Replenishing of the oxygen in tin oxide was demonstrated by switching the gas flow from H2-N2 mixture to pure nitrogen and compressed air. It takes about 20 min for the absorption signal to decrease to the baseline after the gas sample was switched to pure nitrogen, while the absorption signal decreased quickly (in 5 min) to the baseline after switching to compressed air. The adhesion of tin oxide thin films is found to be improved by pre-coating a thin layer of silica gel on the optical fiber. Adhesion increases due to increase interaction of optical fiber surface and the coated silica gel and tin oxide film. Optical absorption spectra of SnO2 coating doped with 5 wt% MoO3 were observed to change and red-shifted from 320 nm to 600 nm. SnO2 thin film promoted with 1 wt% Pt was found to be sensitive to CH4 containing gas.  相似文献   

7.
A pulsed, high-voltage, discharge-excited nozzle source has been developed and exploited to study the possibility of sputtering and entraining various metal atoms into the gas expansion from the discharge electrodes. By appropriate choice of electrode materials, atomic beams of copper, silver, tin and lead have been generated and spectroscopically characterized by 2 + 1 laser multiphoton ionization with mass analysis. Sufficiently high atomic densities are achieved with this nozzle system that metal clustering also takes place, producing dimers such as Ag2, species of mixed composition such as AgSn and trimers, Ag3. In addition, chemical reactions have been observed which can be initiated in the discharge and which lead to the formation of metal–ligand complexes when suitable molecules are seeded into the carrier gas. Mass spectral evidence for two such silver complexes is presented.  相似文献   

8.
The scope of this paper is to investigate and discuss how molecular emission can affect elemental analysis in glow discharge optical emission (GD-OES), particularly in compositional depth profiling (CDP) applications. Older work on molecular emission in glow discharges is briefly reviewed, and the nature of molecular emission spectra described. Work on the influence of hydrogen in the plasma, in particular elevated background due to a continuum spectrum, is discussed. More recent work from sputtering of polymers and other materials with a large content of light elements in a Grimm type source is reviewed, where substantial emission has been observed from several light diatomic molecules (CO, CH, OH, NH, C2). It is discussed how the elevated backgrounds from such molecular emission can lead to significant analytical errors in the form of “false” depth profile signals of several atomic analytical lines. Results from a recent investigation of molecular emission spectra from mixed gases in a Grimm type glow discharge are presented. An important observation is that dissociation and subsequent recombination processes occur, leading to formation of molecular species not present in the original plasma gas. Experimental work on depth profiling of a polymer coating and a thin silicate film, using a spectrometer equipped with channels for molecular emission lines, is presented. The results confirm that molecular emission gives rise to apparent depth profiles of elements not present in the sample. The possibilities to make adequate corrections for such molecular emission in CDP of organic coatings and very thin films are discussed.  相似文献   

9.
Hydrophobically capped nanocrystals of formamidinium lead bromide (FAPbBr3) perovskite (PNC) show bright and stable fluorescence in solution and thin‐film states. When compared with isolated PNCs in a solution, close‐packed PNCs in a thin film show extended fluorescence lifetime (ca. 4.2 μs), which is due to hopping or migration of photogenerated excitons among PNCs. Both fluorescence quantum efficiency and lifetime decrease in a PNC thin film doped with fullerene (C60), which is attributed to channeling of exciton migration into electron transfer to C60. On the other hand, quenching of fluorescence intensity of a PNC solution is not accompanied by any change in fluorescence lifetime, indicating static electron transfer to C60 adsorbed onto the hydrophobic surface of individual PNCs. Exciton migration among close‐packed PNCs and electron transfer to C60 places C60‐doped PNC thin films among cost‐effective antenna systems for solar cells.  相似文献   

10.
The plasma enhanced chemical vapour deposition method applying atmospheric dielectric barrier discharge (ADBD) plasma was used for TiOx thin films deposition employing titanium (IV) isopropoxide and oxygen as reactants, and argon as a working gas. ADBD was operated in the filamentary mode. The films were deposited on glass. The films?? chemical composition, surface topography, wettability and aging were analysed, particularly the dependence between precursor and reactant concentration in the discharge atmosphere and its impact on TiOx films properties. Titanium in films near the surface area was oxidized, the dominating species being TiO2 and substoichiometric titanium oxides. The films exhibited contamination with carbon, as a result of atmospheric oxygen and carbon dioxide reactions with radicals in films. No relevant difference of the film surface due to oxygen concentration inside the reactor was determined. The films were hydrophilic immediately after deposition, afterwards their wettability diminished, due to chemical reactions of the film surface and chemical groups involved in the atmosphere.  相似文献   

11.
The transport of pure gases and of binary gas mixtures through a microporous composite membrane is discussed. The membrane consists of an alumina support with a mean pore diameter of 160 nm and an alumina top (separation) layer with pores of 2-4 nm. The theory of Knudsen diffusion, laminar flow and surface diffusion is used to describe the transport mechanisms. It appears for the composite membrane that Knudsen diffusion occurs in the toplayer and combined Knudsen diffusion/laminar flow in the support at pressure levels lower than 200 kPa. For the inert gas mixture H2/N2 separation factors near 3 could be achieved which is 80% of the theoretical Knudsen separation factor. This value is shown to be the product of the separation factor of the support (1.9) and of the top layer (1.5). The value for the top layer is rather low due to the relatively small pressure drop across this layer. This situation can be improved by using composite membranes consisting of three or more layers resulting in a larger pressure drop across the separation layer.CO2 surface diffusion occurs on the internal surface of the investigated alumina membranes. At 250-300 K and a pressure of 100 kPa the contribution of surface diffusion flow measured by counterdiffusion is of the same order of magnitude as that resulting from gas diffusion. The adsorption energy amounts —25 kJ/mol and the surface coverage is 20% of a monolayer at 293 K and 100 kPa. The calculated surface diffusion coefficient is estimated to be 2-5 x 10-9 m2/sec.Modification of the internal pore surface with MgO increases the amount of adsorbed CO2 by 50-100%.Modifications with finely dispersed silver are performed to achieve O2 surface diffusion.  相似文献   

12.
13.
A thin polydimethylsiloxane (PDMS) layer on polyethersulfone (PES) support was synthesized and pure and mixed gas permeation of C3H8, CH4, and H2 through it was measured. At first, a macroporous PES support was prepared by using the phase inversion method and characterized. Then, a thin layer of PDMS was coated over the support. Finally, permeation behavior of the synthesized composite membrane was investigated by pure and mixed gas experiments under various operating conditions. The synthesized PDMS/PES membrane showed much better gas permeation performance than others reported in the literature. Pure gas experiments showed that increase in the transmembrane pressure increases the permeability coefficient of heavier gases, C3H8, while decreases those of lighter ones, CH4 and H2. Exactly opposite behavior was observed in mixed gas experiments due to the competitive sorption and diffusion in the plasticized polymer matrix. Temperature was realized to induce similar effects on the permeability of pure and mixed gases. As expected, in rubbery membranes such as PDMS, permeability values of more condensable gases decrease with increasing temperature, whereas those of permanent gases increase. In the case of mixed gas experiments, increase in the C3H8 concentration in feed led to increase in the permeabilities of all the components due to the C3H8‐induced swelling of the PDMS film. High C3H8/H2 and C3H8/CH4 ideal selectivities of 22.1 and 14.7, respectively, at a transmembrane pressure of 7 atm as well as reasonable C3H8 separation factor (SF) values for all mixed gas experiments (in the range of 8.1–16.8) demonstrated the ability of the synthesized PDMS/PES membrane for the separation of organic vapors from permanent gases. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
Boron-doped diamond (BDD) thin films with different crystal grain sizes were prepared by controlling the reacting gas pressure using hot filament chemical vapor deposition (HFCVD). The morphologies and structures of the prepared diamond thin films were characterized by scanning electron microscopy (SEM) and Raman spectroscopy. The electrochemical responses of K4Fe(CN)6 on different BDD electrodes were investigated. The results suggested that electron transfer was faster at the boron-doped nanocrystalline diamond (BDND) thin film electrodes in comparison with that at other BDD thin film electrodes. The prepared BDD thin film electrodes without any modification were used to directly detect glucose in the basic solution. The results showed that the as-prepared BDD thin film electrodes exhibited good selectivity for detecting glucose in the presence of ascorbic acid (AA) and uric acid (UA). The higher sensitivity was observed on the BDND thin film grown on the boron-doped microcrystalline diamond (BDMD) thin film surface, and the linear response range, sensitivity and the low detection limit were 0.25–10 mM, 189.1 μA mmo?1 cm?2 and 25 μM (S/N=3) for glucose in the presence of AA and UA, respectively.  相似文献   

15.
Magnetron sputtering deposition is a widely used technique to deposit thin film precisely at nanoscale level. During the deposition of metal oxide thin films, reactive oxygen gas is introduced into the deposition chamber. Pure metal and metal oxide materials can be used as sputter target, although the simplest way is by using a pure metal target. In such reactive process, the effect of target poisoning significantly influence the deposition process and the growth mechanisms of metal oxide thin films became very complex. In general, external parameters such as discharge power, working pressure, reactive gases ratio and substrate temperature are used to optimize the properties of deposited thin films. Then, ex-situ analyses such as scanning electron microscope and X-ray diffraction analysis are performed to obtain the optimized parameter. Sample depositions and ex-situ analyses consume time to achieve the goal through try and error. In this article, in-situ plasma diagnostics are reviewed focusing on an optical emission spectroscopy to precisely control and investigate the sputter target poisoning effect during the deposition of metal oxide thin films. The emission of atomic lines from several metal and oxygen atoms were used to discuss the deposition mechanisms and their correlation with the deposited thin films was observed. Finally, the deposited metal oxide thin films were proposed and tested for several applications such as gas sensor and frequency selective surface glass.  相似文献   

16.
Glow discharge plasmas with helium–(0–16%) nitrogen mixed gas were investigated as an excitation source in optical emission spectrometry. The addition increases the sputtering rate as well as the discharge current, because nitrogen molecular ions, which act as primary ions for the cathode sputtering, are produced through Penning-type ionization collisions between helium metastables and nitrogen molecules. The intensity of a silver atomic line, Ag I 338.29 nm, is monotonically elevated along with the nitrogen partial pressure added. However, the intensities of silver ionic lines, such as Ag II 243.78 nm and Ag II 224.36 nm, gave different dependence from the intensity of the atomic line: Their intensities had maximum values at a nitrogen pressure of 30 Pa when the helium pressure and the discharge voltage were kept at 2000 Pa and 1300 V. This effect is principally because the excitations of these ionic lines are caused by collisions of the second kind with helium excited species such as helium metastables and helium ion, which are quenched through collisions with nitrogen molecules added to the helium plasma. The sputtering rate could be controlled by adding small amounts of nitrogen to the helium plasma, whereas the cathode sputtering hardly occurs in the pure helium plasma.  相似文献   

17.
《Microchemical Journal》2008,88(2):175-179
Glow discharge plasmas with helium–(0–16%) nitrogen mixed gas were investigated as an excitation source in optical emission spectrometry. The addition increases the sputtering rate as well as the discharge current, because nitrogen molecular ions, which act as primary ions for the cathode sputtering, are produced through Penning-type ionization collisions between helium metastables and nitrogen molecules. The intensity of a silver atomic line, Ag I 338.29 nm, is monotonically elevated along with the nitrogen partial pressure added. However, the intensities of silver ionic lines, such as Ag II 243.78 nm and Ag II 224.36 nm, gave different dependence from the intensity of the atomic line: Their intensities had maximum values at a nitrogen pressure of 30 Pa when the helium pressure and the discharge voltage were kept at 2000 Pa and 1300 V. This effect is principally because the excitations of these ionic lines are caused by collisions of the second kind with helium excited species such as helium metastables and helium ion, which are quenched through collisions with nitrogen molecules added to the helium plasma. The sputtering rate could be controlled by adding small amounts of nitrogen to the helium plasma, whereas the cathode sputtering hardly occurs in the pure helium plasma.  相似文献   

18.
Results are presented of optical emission spectroscopy (OES) application asa control tool to improve fly-ash plasma vitrification. A twin-torch plasmasystem has been used for the fly-ash processing, and a new OES method hasexamined metallic vapors above the melt. The method allows the study ofnonhomogeneous optically thin plasmas exhibiting a symmetry plane withoutsophisticated tomographic systems. The dc arc torches are mounted above acold crucible filled with a synthetic glass. The arc intensity is from200 to 400 . Argon is introduced into the torches along the cathodeand the anode, while argon, oxygen or hydrogen are injected through thelance between the torches. Local plasma temperatures above the melt havebeen evaluated using measured relative intensities of spectral lines ofthe plasma-forming gas. Metallic vapor concentration in the plasma isdeduced from the intensity ratio of the metal–gas spectral lines. Leadoxide has been used to study heavy-metal behavior at the fly-ash plasmavitrification. Distribution of the lead along the crucible surface,depending on the plasma-forming gas composition as well as the concentrationevolution with time, have been examined. The elemental analysis of theresultant glass has been measured by scanning electron microscopy (SEM)with energy-dispersive spectrometry (EDS). A predictive model has beenadapted to simulate the noncongruent vaporization of heavy metals from themelt. According to the data obtained, steep variations of the volatility ofthe elements depend strongly on reducing properties of gases controllingthe plasma composition near the melted surface. In addition, the melttemperature and the redox potential of the gas phase are found to be themost critical parameters.  相似文献   

19.
Nanostructures made of magnetic cores (from Fe3O4) with attached silver plasmonic nanostructures were covered with a very thin layer of silica. The (Fe3O4@Ag)@SiO2 magnetic–plasmonic nanomaterial can be manipulated using a magnetic field. For example, one can easily form homogeneous layers from this nanomaterial using a very simple procedure: deposition of a layer of a sol of such a nanostructure and evaporation of the solvent after placing the sample in a strong magnetic field. Due to the rapid magnetic immobilization of the magnetic–plasmonic nanomaterial on the investigated surface, no coffee-ring effect occurs during the evaporation of the solvent. In this contribution, we report the first example of a magnetic, silver-based plasmonic nanomaterial for shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS). Nanoresonators based on silver plasmonic nanostructures locally enhance the intensity of the exciting electromagnetic radiation in a significantly broader frequency range than the previously used magnetic SHINERS nanoresonators with gold plasmonic nanostructures. Example applications where the resulting nanomaterial was used for the SHINERS investigation of a monolayer of mercaptobenzoic acid chemisorbed on platinum, and for a standard SERS determination of dopamine, are also presented.  相似文献   

20.
The surface modification of poly (ethylene terephthalate) (PET) film was carried out using an atmospheric pressure plasma (APP) jet device with three reactive gases: air, N2, and Ar. The water contact angles on the PET film were found to decrease considerably after the APP exposure. The changes in the advancing and receding contact angles of water on the APP-exposed PET film with aging time were examined by the wetting force measurements employing the Wilhelmy method. The hydrophobic recovery due to the rinsing with water as well as the aging in air was observed only for the advancing angle, which was probably caused by the dissolution of low molecular weight oxidized materials into water, the loss of volatile oxidized species to the atmosphere and the reorientation and the migration of polymer chains. The wettability and the surface free energy of the APP-exposed PET film after diminishing hydrophobic recovery was sufficiently large compared with the untreated film. X-ray photoelectron spectroscopy confirmed that the PET film surface was oxidized due to the APP exposure. When N2 gas was used for the APP exposure, the surface nitrogen concentration was found to increase with decreasing D. The surface oxygen concentration on the APP-exposed PET film was reduced by rinsing with water, in accordance with the hydrophobic recovery behavior. From atomic force microscopy, surface topographical change due to the APP exposure was observed. The changes in the PET surface properties due to the APP exposure as mentioned above were remarkable for using N2 gas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号