首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Light-emitting electrochemical cells (LECs) are a promising type of electroluminescent device for display and lighting applications. In this study, LECs based on ionic iridium complexes utilizing a tetrazole based ancillary ligand were fabricated and their electrical properties were investigated. Two new iridium(III) complexes with tetrazole based ancillary ligands, namely, [Ir(ppy)2(tetrazole)]PF6 (complex 1) and [Ir(dfppy)2(tetrazole)]PF6 (complex 2) (where ppy is 2-phenylpyridine, dfppy is 2-(2,4-difluorophenyl)pyridine, tetrazole is 5-bromo-2-(2-methyl-2H-tetrazol-5-yl)-pyridine and PF6 is hexafluorophosphate), have been synthesized and characterized. These synthesized complexes were used for the fabrication of LEC devices. LECs based on complex 1 result in orange light emission (576 nm) with the Commission Internationale de l’Eclairage (CIE) coordinates of (0.45, 0.49), while complex 2 emits green (518 nm) electroluminescence with the CIE coordinates of (0.33, 0.49). Our work suggests that the light emission of cationic iridium complexes can easily be tuned by the substituents on the cyclometalated ligands.  相似文献   

2.
Two earlier unknown complexes, [Cu(en)2(Hptt)]Br (Hptt = 1-phenyl-1H-terazole-5-thiol, en = ethylenediamine) and trans-[Cu(en)2(H2O)Br]Br, have been synthesized and characterized using X-ray diffraction analysis. In [Cu(en)2(Hptt)]Br complex, the copper cation is bonded with the N4 atom of tetrazole ring. Catalytic activity of the obtained complexes in cross-coupling reaction of 1-phenyl-5H-tetrazole-5-thiol with iodobenzene is comparable to that of CuBr2 in the presence of 2 eq. of ethylenediamine.  相似文献   

3.
Nickelatetrazoles have been proposed as intermediates in the course of the photoreaction of NiII complexes of [NiP2(N3)2] constitution (P2: mono‐ or diphosphane ligands). However, any metallatetrazoles as well as their organic analogue, 5 H‐carbatetrazole, could neither be prepared nor identified up to now. Based on density functional theory (DFT) calculations, predictions are given concerning the molecular and electronic structure of tetrazoles. While 5 H‐tetrazole is indeed a rather unstable species, metallatetrazole moieties in square‐planar d8 transition metal complexes should be experimentally accessible.  相似文献   

4.
A series of seven new tetrazole‐based ligands (L1, L3–L8) containing terpyridine or bipyridine chromophores suited to the formation of luminescent complexes of lanthanides have been synthesized. All ligands were prepared from the respective carbonitriles by thermal cycloaddition of sodium azide. The crystal structures of the homoleptic terpyridine–tetrazolate complexes [Ln(Li)2]NHEt3 (Ln=Nd, Eu, Tb for i=1, 2; Ln=Eu for i=3, 4) and of the monoaquo bypyridine–tetrazolate complex [Eu(H2O)(L7)2]NHEt3 were determined. The tetradentate bipyridine–tetrazolate ligand forms nonhelical complexes that can contain a water molecule coordinated to the metal. Conversely, the pentadentate terpyridine–tetrazolate ligands wrap around the metal, thereby preventing solvent coordination and forming chiral double‐helical complexes similarly to the analogue terpyridine–carboxylate. Proton NMR spectroscopy studies show that the solid‐state structures of these complexes are retained in solution and indicate the kinetic stability of the hydrophobic complexes of terpyridine–tetrazolates. UV spectroscopy results suggest that terpyridine–tetrazolate complexes have a similar stability to their carboxylate analogues, which is sufficient for their isolation in aerobic conditions. The replacement of the carboxylate group with tetrazolate extends the absorption window of the corresponding terpyridine‐ (≈20 nm) and bipyridine‐based (25 nm) complexes towards the visible region (up to 440 nm). Moreover, the substitution of the terpyridine–tetrazolate system with different groups in the ligand series L3–L6 has a very important effect on both absorption spectra and luminescence efficiency of their lanthanide complexes. The tetrazole‐based ligands L1 and L3–L8 sensitize efficiently the luminescent emission of lanthanide ions in the visible and near‐IR regions with quantum yields ranging from 5 to 53 % for EuIII complexes, 6 to 35 % for TbIII complexes, and 0.1 to 0.3 % for NdIII complexes, which is among the highest reported for a neodymium complex. The luminescence efficiency could be related to the energy of the ligand triplet states, which are strongly correlated to the ligand structures.  相似文献   

5.
A systematic NMR study was performed on several alkyl–tetrazole complexes of iron(II) and zinc(II) in the 10–300 K temperature range. The experiments were designed to separate the electronic and reorientational phase transitions caused by the spin crossover of the iron compounds from those independent of unpaired electrons. The 19F spectral data on the propyl-tetrazole compounds show that the electronic spin-transition has a strong effect on the spectra, and their behavior can be explained as a combined response to molecular reorientations and the spin transition. For these complexes, second-moment calculations revealed the strength of the interaction between resonant and nonresonant nuclei. Both of the applied NMR methods show irregularities at the temperature region between 70 and 120 K, suggesting the presence of a phase transition. The data also suggest two kinds of reorientational behavior for the BF4 counter ions. In the iron–ethyl–tetrazole compound, unlike in the propyl–tetrazole complex, a significant amount of unpaired electrons remains in their original high-temperature HS state. Above their effect, the behavior of the nuclear spins of the iron compound is basically governed by the same structural factors as in its zinc analog. The two-exponential behavior of the 1H-T 1 in case of the zinc–methyl–tetrazole compound can be explained on the basis of cross relaxation with the 19F nuclei due to the low 1H/19F ratio. The presence of the two types of methyl reorientation is assumed to be the sign of the two different lattice sites known to be present in the FeII compound. The single-exponential T 1 above T c in the case of [Fe(mtz)6](BF4)2 is consistently the sign of the strength of the paramagnetic relaxation observed in the ethyl and propyl compounds.  相似文献   

6.
The two‐dimensional (2D) layer CuII compound [Cu3(L)2(N3)4] ( 1 ) [L = 2‐amino‐3‐(5‐tetrazole)‐methyate‐N‐pyridine] was synthesized by in‐situ hydrothermal reaction of CuCl2 · 2H2O, NaN3, and 3‐(5‐tetrazole)‐methyate‐N‐pyridine. The central Cu1 and Cu2 atoms are located in five‐coordinate and six‐coordinate arrangements, respectively. Three CuII ions are linked by mixed double EO (end‐on)‐azido‐tetrazole bridges to give trinuclear CuII clusters, which are further extended by EE (end‐to‐end) azido bridges to form 2D metal‐organic layers. The magnetic exchange interactions in complex 1 were investigated by DFT calculations, and the calculated exchange interaction (J = –849 cm–1) revealed that the double EO‐azido‐tetrazole bridges transmit antiferromagnetic coupling between CuII ions.  相似文献   

7.
The synthesis of new monodentate heterocyclic ligands 5-(4-pyridyl)-2-alkyltetrazole (L1a,b) and 4-[5-(2-alkyltetrazole)]aryl-4'-pyridinecarboxylate (L2a,b,c) containing two or three aromatic or heterocyclic rings (tetrazole, pyridine and benzene) and preparation of their corresponding silver(I) and palladium(II) complexes (Ia,b,c and IIa,b,c) are described. The thermal behaviour of the ligands and complexes was characterized by polarizing optical microscopy. The ligands and the complexes Ia,b,c and IIc showed no liquid crystalline phase. The complexes IIa,b showed mesomorphic behaviour, exhibiting smectic A enantiotropic mesomorphism X-ray diffraction measurements for complex Ia showed monodentate coordination of N-pyridine, and no coordination on the nitrogen atoms of the tetrazole ring.  相似文献   

8.
1‐tert‐Butyl‐1H‐1,2,4‐triazole (tbtr) was found to react with copper(II) chloride or bromide to give the complexes [Cu(tbtr)2X2]n and [Cu(tbtr)4X2] (X = Cl, Br). 1‐tert‐Butyl‐1H‐tetrazole (tbtt) reacts with copper(II) bromide resulting in the formation of the complex [Cu3(tbtt)6Br6]. The obtained crystalline complexes as well as free ligand tbtr were characterized by elemental analysis, IR spectroscopy, thermal and X‐ray analyses. For free ligand tbtr, 1H NMR and 13C NMR spectra were also recorded. In all the complexes, tbtr and tbtt act as monodentate ligands coordinated by CuII cations via the heteroring N4 atoms. The triazole complexes [Cu(tbtr)2Cl2]n and [Cu(tbtr)2Br2]n are isotypic, being 1D coordination polymers, formed at the expense of single halide bridges between neighboring copper(II) cations. The isotypic complexes [Cu(tbtr)4Cl2] and [Cu(tbtr)4Br2] reveal mononuclear centrosymmetric structure, with octahedral coordination of CuII cations. The tetrazole compound [Cu3(tbtt)6Br6] is a linear trinuclear complex, in which neighboring copper(II) cations are linked by single bromide bridges.  相似文献   

9.
Two mononuclear Cu(II) complexes, [Cu(L1H2)](ClO4)1.25Cl0.75·1.25H2O (1) and [Cu(L2H2)](ClO4)2 (2), of the pyridoxal Schiff base ligands N,N′-dipyridoxylethylenediimine (L1H2) and N,N′-dipyridoxyl-1,3-propanediimine (L2H2) are reported. X-ray crystal structures of both complexes are also reported. In both complexes the pyridoxal nitrogen atoms remain protonated. In the solid state, the tetradentate Schiff base ligand is virtually planar in 1, while in 2 the ligand conformation is like an inverted umbrella. In cyclic voltammetry experiments it is found that in these complexes the Cu(III) and Cu(I) states are more easily accessible than in their salen type analogs. The pyridoxal Schiff base complexes are also found to be resistant to oxidative electro-polymerization, unlike their corresponding salicyl aldehyde Schiff base complexes.  相似文献   

10.
The i.r. spectra of the complexes M(en)3X2 (M = Mn, Fe, Co, Ni, Cu, Zn), trans-Cu(en)2X2, Ni(en)2X2 and M(en)X2 (M = Ni, Cu, Zn; X = Cl, Br, I) have been studied. Assignments are proposed for the tris(ethylenediamine) complexes on the basis of 15N-, N2D4- and C2D4-labelling of en and the effects of metal ion substitution in relation to our earlier study of [M(en)3]SO4 complexes. Assignments for the bis(ethylenediamine) complexes are based on our observations of halogen-sensitivity and earlier studies on metal isotope labelling and ligand deuteration of the halide complexes and a normal coordinate analysis of the [Cu(en)2]2+ species. The spectra of the halide complexes have been extended below 200 cm−1 for the first time. Finally, the spectra of the mono(ethylenediamine) complexes are discussed in relation to their known or probable structures.  相似文献   

11.
Three novel 5‐R‐tetrazolato complexes (R = Me, Ph, 4‐Py), namely [Zn2(MeCN4)4(DMSO)2] ( 1 ), [Cu2(PhCN4)4(en)2] · 2DMSO ( 2 ), and [Cu(4‐PyCN4)2(DMSO)2] · 4DMSO ( 3 ), were isolated as unexpected products under attempts to prepare heterometallic tetrazolates using a direct synthesis strategy in the Cu0‐ZnO‐en‐RCN4H‐DMSO system (en = ethylenediamine). The prepared compounds were characterized by elemental, single‐crystal X‐ray, and thermal analyses, and IR spectroscopy. Variation of the 5‐substituent of the tetrazole ring causes different composition of complexes 1 – 3 and diverse coordination modes of 5‐R‐tetrazolato ligands. Complex 1 is a 3D coordination polymer due to N1, N4‐bridging of 5‐methyltetrazolato anions. Complex 2 , with en as a coligand, has a dinuclear structure with two copper atoms linked together by two 5‐phenyltetrazolato ligands by tetrazole N2, N3 bridges. Complex 3 represents a 2D coordination polymer, formed due to 5‐(4‐pyridyl)tetrazolato bridges between adjacent copper atoms (with the tetrazole and pyridine rings nitrogen atoms as coordination centers). DMSO molecules, included in all the compounds, are solvate and/or coordinated ones.  相似文献   

12.
Co(II) complexes with 4,6-di(tert-butyl)-2-aminophenol (HLI) and 2-anilino-4,6-di(tert-butyl)phenol (HLII) have been synthesized and characterized by means of physico-chemical methods. The compounds HLI and HLII coordinate in their singly deprotonated forms and behave as bidentate O,N-coordinated ligands; their low-spin Co(II) complexes are characterized by CoN2O2 coordination modes and square planar geometry. Both the free ligands and their Co(II) and Cu(II) complexes (we have produced and characterized the latter before) exhibit a pronounced antifungal activity against Aspergillus niger, Fusarium spp., Mucor spp., Penicillium lividum, Botrytis cinerea, Alternaria alternata, Sclerotinia sclerotiorum, Monilia spp., which in a number of cases is comparable with that of Nystatin and Terbinafine or even higher. The reducing properties of the ligands and their metal(II) complexes, as well as their antifungal activities, were found to decrease in the order: Cu(LI)2 > Cu(LII)2 ? Co(LI)2 > Co(LII)2 > HLI > HLII.  相似文献   

13.
《Polyhedron》2003,22(28):3547-3553
The synthesis of [N-MeA]2[M(mnt)2] (N-MeA=N-methylacridine; M=Ni (II), Zn (II), Cu (II) and Cd (II); mnt=maleonitriledithiolate) and crystal structure analysis of the Ni (1) and Zn (2) complexes are reported. The conductivities of almost all the complexes under 4 MPa pressure are above 10−5 S cm−1, which are characteristic of intrinsic semi-conductors. The complexes exhibit charge transfer transitions in both their absorption spectra and fluorescence spectroscopy.  相似文献   

14.
Some metal complexes of DL–methionine were prepared in aqueous medium and characterized by different physico-chemical methods. Methionine forms 1:2 complexes with metal, M(II). The general empirical formula of the complexes is proposed as [(C5H10NO2S)2MII]; where MII = Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II). All the complexes are extremely stable in light and air and optically inactive. Magnetic susceptibility data of the complexes demonstrate that they are high spin paramagnetic complex except Zn(II), Cd(II) and Hg(II) complexes. The bonding pattern in the complexes are similar to each other as indicated by electronic absorption spectra and FTIR spectral analysis. The current potential data, peak separation (AE) and the peak current ratio (ipa/ipc) of the (Mn, Cu and Cd) complexes indicate that the charge transfer processes are irreversible, the systems are diffusion controlled and also adsorptive controlled. The charge transfer rate constant of metals in their complexes are less than those in their metal salts at identical experimental conditions due to the coordination of metal with methionine.  相似文献   

15.
The complexes [Zn(en)3]X2·n H2O, where en = ethylenediamine, X = Cl?, Br? or 12SO2?4, n = 1 or 0.5, and [Zn(tn)2]X2·n H2O, where tn=1,3-diaminopropane, X=Cl?, Br? or 12SO2?4, n = 0 or 0.25, have been synthesized and their thermal investigations carried out. The complexes were characterized by elemental analysis and IR spectral data. These complexes have been observed to decompose through several isolable as well as non-isolable complex species as intermediates during heating. [Zn(tn)2]SO4 undergoes solid-state phase transition in the temperature range 126–145°C. ZnenSO4 and ZntnX2 (X = Cl?, Br? or 12SO2?4) have been synthesized pyrolytically in the solid state from their corresponding mother diamine complexes. ZnenSO4 and ZntnX2 (X = Cl?, Br? or 12SO2?4) complexes decompose through non-isolable hemidiamine species. ZnX2 (X = Cl? or Br?) complexes of tn undergo melting after formation of the monodiamine species. In contrast, the corresponding en complexes undergo melting at non-stoichiometric composition. Diamine (en or tn) is found to be bridging in all monodiamine (en or tn) complexes; whilst their mother complexes possess chelated en or tn. The thermal stability sequence of en and tn complexes of Zn(II) is ZnCl2 < ZnBr2 < ZnSO4. ΔH values are reported for some steps of decomposition. Possible mechanistic paths have been reported for each step of decomposition.  相似文献   

16.
The picolyl hydrazone ligands derived from picolonic acid hydrazide and α-pyridyle ketone (L1, L2 and L3), α-acetyl thiophene (L4), α-formyl or α-acetyl phenol (L5 and L6 respectively) and 2-hydroxy-1-naphthaldehyde (L7) react with equimolecular amount of vanadyl sulfate in refluxing methanol to yield oxidovanadium (IV) complexes. The structure of the obtained ligands and their oxidovanadium (IV) complexes were characterized by various physicochemical techniques, viz. elemental analysis, molar conductance, magnetic susceptibility measurements, thermal analysis (TGA & DTG), IR, electronic absorption and ESR spectral studies. Cyclic voltammeteric behavior of the complexes has also been discussed. Five-coordinate square-pyramidal structure was proposed for all complexes. A monomeric nature was reported for complexes (2), (3), (6), and (7), while dimeric structures were suggested for complexes (1), (4) and (5). The ability of the complexes to catalyze the aerobic oxidation of catechol to the light absorbing o-quinone has been investigated. The results obtained show that all complexes catalyze this oxidation reaction and large variations in the rate were observed. Electrochemical data for most complexes show that there is a linear relationship between their ability to oxidize catechole and their E1/2 potentials. The most effective catalysts were those complexes which exhibited E1/2 values approached to the value of the natural tyrosinase enzyme isolated from mushroom, while those that largely deviated from that potential exhibited lower oxidase catalytic activity. The probable mechanistic implications of the catalytic oxidation reactions are discussed.  相似文献   

17.
Imidazole and tetrazole derivatives are widely used as clinical drugs since they possess a variety of pharmaceutical function. Zinc and iron are essential trace elements of the human body, with less toxicity and good biocompatibility. In this paper, two new essential metal mononuclear complexes [M(H2tmidc)2(H2O)2]·2H2O (M = Zn (1), Fe (2)) were synthesized through the reaction of 2-((1H-tetrazol-1-yl)methylene)-1H-imidazole-4,5-dicarboxylic acid (H3tmidc) and ZnSO4·7H2O or FeSO4·7H2O. The crystal structures were determined by means of the X-ray single crystal diffraction technique. Results from fluorescence investigations show that both complexes could interact with BSA as well as HSA through the static quenching mechanism. van der Waals forces and hydrogen bonds play important roles in the interaction of complexes and BSA/HSA since both ΔH and ΔS values are negative. The results of molecular docking are consistent with those in experimental studies. Furthermore, the anticancer activity of H3tmidc and both complexes against Eca-109 were preliminarily evaluated and the results show that both complexes have better anticancer activity than the corresponding ligand H3tmidc.  相似文献   

18.
The infrared spectra of eight complexes of general formula [ML2(NCS)2] (M = Co, Ni, Cu, Zn; L = aniline or p-toluidine) have been determined over the range 4000–4150 cm?1. Colour, magnetic moments and IR spectra are consistent with polymeric octahedral coordination in the Co(II) and Ni(II) complexes and polymeric tetragonal coordination in the Cu(II) complexes, while the Zn(II) complexes are assigned polymeric octahedral (L = aniline) and tetrahedral (L = p-toluidine) structure on the basis of their IR spectra. Independent 15N-labelling of the nitrogen atoms of the amino and isothiocyanate groups yields assignments for the internal vibrations of both groups and enables the metal-amine and metal—isothiocyanate stretching vibrations (vM-NH2 and vM-NCS) to be distinguished. Both vM-NH2 and vM-NCS are metal ion dependent in the Irving-Williams sequence (Co < Ni < Cu > Zn) expected from their proposed structures while the vN-H and vN-CS vibrations are inversely related to the masses of the coordinated metal ions.  相似文献   

19.
Acetoxyalkyl metal derivatives M(C5H5)(CO)n[CHROC(O)Me] [M = Fe, n = 2; M = Mo, n = 3; R = H, Me] are readily prepared by reaction of bromoalkylacetates with the appropriate cyclopentadienylcarbonylmetallate anion. The complexes are characterised by their NMR (1H and 13C) and IR parameters and by mass spectrometry. The acetoxyethyl species are thermally labile via β-hydrogen transfer. Treatment of acetoxymethyl complexes with protic acids leads to carbon-oxygen cleavage and release of acetic acid; HCl affords chloromethyl complexes, carboxylic acids yield new carboxylatomethyl derivatives, HBF4 leads to decomposition. The metalloesters are resistant to hydrolysis, transesterification and carboxylate displacement by nucleophiles (HO?, MeO?, H2N? Et2N?). Migratory insertion of CO could not be induced.  相似文献   

20.
By reaction of (OC)5ReFBF3 with tetrazole, 5‐methyltetrazole, p‐dimethylaminopyridine, several triphenyliminophosphoranes, and with triphenylphosphine oxide cationic complexes [(OC)5Re‐L]+BF4 were prepared.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号