首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Tetrahedron: Asymmetry》2005,16(18):3059-3069
The paper reports the first enantioselective synthesis of all the possible collagen reduced cross links as described: (2S,2′S,5R)- and (2S,2′S,5S)-5-hydroxylysinonorleucine 3a and 3b, (2S,2′S,5R,5′R)-5,5′-dihydroxylysinonorleucine 4a, (2S,2′S,5R,5′S)-5,5′-dihydroxylysinonorleucine 4b and (2S,2′S,5S,5′S)-5,5′-dihydroxylysinonorleucine 4c. The Williams’ glycine template methodology was used both for the introduction of a stereogenic at the α-position and for an easy protection of the amino acidic functionalities during the synthesis of the dimeric amino acids.  相似文献   

2.
An efficient method for the synthesis of (1S,2R,4R,5S)- and (1R,2R,4R,5S)-2-amino-4,5-dihydroxycyclohexanecarboxylic acids (?)-6 and (?)-9 and (1R,2R,3S,4R)- and (1S,2R,3S,4R)-2-amino-3,4-dihydroxycyclohexanecarboxylic acids (?)-15 and (?)-18 was developed by using the OsO4-catalyzed oxidation of Boc-protected (1S,2R)-2-aminocyclohex-4-enecarboxylic acid (+)-2 and (1R,2S)-2-aminocyclohex-3-enecarboxylic acid (+)-11. Good yields were obtained. The stereochemistry of the synthesized compounds was proven by NMR spectroscopy.  相似文献   

3.
《Tetrahedron: Asymmetry》1999,10(2):207-211
The reaction of 2-lithiophenyldiphenylphosphine with phosphorus trichloride afforded the new unsymmetric phosphine, dichloro(2-diphenylphosphinophenyl)phosphine (4). Condensation of 4 with (a) (2R,3R)-dimethyl tartrate or (b) (S)-binaphthol in the presence of triethylamine gave new chiral phosphine-phosphonite ligands, (2R,3R)-[2-(2′-(diphenylphosphino)phenyl)-4,5-bis(carbomethoxy)-1,3,2-dioxaphospholane] ((2R,3R)-5) and (S)-[2-(diphenylphosphino)benzene][1,1′-binaphthalen-2,2′-diyl]phosphonite] ((S)-6). The analogous reaction of 4 with (1R,2S)-ephedrine using N-methylmorpholine as the base, gave [2-(2′-(diphenylphosphino)phenyl)-3,4-dimethyl-5-phenyl-1,3,2-oxazaphospholidine] (7) as a 95:5 mixture of diastereoisomers.  相似文献   

4.
《Tetrahedron: Asymmetry》2007,18(4):513-519
Total synthesis of (4R,5S,6E,14S)- and (4R,5S,6E,14R)-cystothiazoles F 3 was achieved from the chiral bithiazole-type primary alcohols [(S)- and (R)-4-ethoxycarbonyl-2′-(1-hydroxymethylethyl)-2,4′-bithiazoles 8], which were obtained based on the enzymatic resolution of racemic alcohol 8 and its acetate 9. From a direct comparison by means of chiral HPLC between natural cystothiazole F 3 and synthetic compounds [(4R,5S,6E,14S)- and (4R,5S,6E,14R)-cystothiazoles 3], natural cystothiazole F 3 was found to be a 33:67 diastereomeric mixture [(4R,5S,6E,14S)-3:(4R,5S,6E,14R)-3 = 33:67].  相似文献   

5.
《Tetrahedron: Asymmetry》2007,18(18):2211-2217
(1R,2S,3R,5S,7aR)-1,2-Dihydroxy-3-hydroxymethyl-5-methylpyrrolizidine 10 [(+)-5-epihyacinthacine A5] and (1R,2S,3R,5S,7aS)-1,2-dihydroxy-3-hydroxymethyl-5-methylpyrrolizidine 17 [ent-5-epihyacinthacine A4] have been synthesized by either Horner–Wadsworth–Emmons (HWE) or Wittig methodology using aldehydes 6 and 13, prepared from (2R,3S,4R,5R)-3,4-dibenzyloxy-N-benzyloxycarbonyl-2′-O-tert-butyldiphenylsilyl-2,5-bis(hydroxymethyl)pyrrolidine 5 (partially protected DALDP) and (2R,3S,4R,5S)-3,4-dibenzyloxy-N-benzyloxycarbonyl-2,5-bis(hydroxymethyl)-2′-O-pivaloylpyrrolidine 12 (partially protected DGADP), respectively, and the appropriated ylide, followed by cyclization through an internal reductive amination process of the corresponding intermediate pyrrolidinic ketones 7 and 14 and subsequent deprotection.  相似文献   

6.
《Tetrahedron》1986,42(6):1763-1768
(-)-(1S,3S,5R,6S,8R,10R)-Trishomocubanethanoic acid (5) of known absolute configuration and absolute rotation was converted into (+)-(1S,3S,5S,6S,8R,10R)-2-bromoethynyl-D3-trishomocubane (27) of C3 symmetry. 1,3,5,7-Tetraethynyladamantane (22), with Td symmetry, was prepared from 1,3,5,7-tetrakis(hydroxymethyl)adamantane(13). Coupling of the C3-component 27 with the Td component 22 was successfully accomplished by Chodkiewicz and Cadiot's procedure providing (+)-1,3,5,7-tetrakis[2-(1S,3S,5R,6S,8R,10R)-D3-trishomocubanylbuta-1,3-diynyl]adamantane(4) whose highest attainable static and time-averaged dynamic symmetry are T and (C3)4 XXX T,respectively.  相似文献   

7.
Kenji Mori 《Tetrahedron letters》2007,48(32):5609-5611
Absolute configuration of gomadalactones A (1), B (2) and C (3), the pheromone components of the white-spotted longicorn beetle (Anoplophora malasiaca) was assigned as (1S,4R,5S)-1, (1R,4R,5R)-2 and (1S,4R,5S,8S)-3 by comparing their published CD spectra with those of (1R,5R)-(+)-4,4,8-trimethyl-3-oxabicyclo[3.3.0]oct-7-ene-2,6-dione (4) and (1S,5R,8S)-(+)-4,4,8-trimethyl-3-oxabicyclo[3.3.0]octane-2,6-dione (5) prepared from (R)-(−)-carvone (6).  相似文献   

8.
《Tetrahedron: Asymmetry》1999,10(5):855-862
Enantiomerically pure (4R,5R)- and (4S,5S)-2-imidazolines 5 were conveniently obtained on a gram scale. These can be converted into enantiopure (2R,3R)-2,3-diamino ester 6 or 2,3-diamino alcohol 7 by hydrolysis or reduction.  相似文献   

9.
《Tetrahedron: Asymmetry》2001,12(5):745-753
The stereospecific synthesis of diaryl(acylamino)(acyloxy)spiro-λ4-sulfanes (S)-(+)-2, (R)-(+)-5, (S)-(+)-8, and their conversion into related diaryl(acylamino)sulfonium tetrafluoroborates (R)-(+)-3, (S)-(+)-6, (R)-(+)-9, respectively, is described. The enantiomers of spiro-λ4-sulfanes (S)-(+)-2, (R)-(+)-5 and (S)-(+)-8 were prepared by dehydration of the corresponding optically active sulfoxide–carboxylic acids (R)-(+)-1, (R)-(−)-4 and (S)-(+)-7, respectively, which were obtained from the racemic forms by diastereoisomeric salt separation with homochiral organic bases. The stereomechanism of the hydrolysis reaction of spiro-λ4-sulfanes and sulfonium tetrafluoroborates that depends on pH, the nature of the axial heteroatom, the size of the spiro rings and carboxyl neighbouring group participation is also discussed.  相似文献   

10.
《Tetrahedron: Asymmetry》2001,12(15):2099-2102
A synthesis of the enamine (−)-(1′S)-5-ethyl-1-(1′-phenylethyl)-1,2,3,4-tetrahydropyridine 4 and its application in a synthesis of (−)-(1′S,4aS,8aR)- and (+)-(1′S,4aR,8aS)-4a-ethyl-1-(1′-phenylethyl)-octahydroquinolin-7-ones 5 and 6 is described. In addition, an X-ray study of 6 is reported. Finally, the preparation of (+)-(4aS,8aR)-4a-ethyl-octahydroquinolin-7-one 7 is described.  相似文献   

11.
Lipase-catalyzed asymmetric acetylation of a mixture of (6R,1′S,4′S,5′R)- and (6R,1′R,4′R,5′S)-7′-norsesquisabinen-4′-ol (3) afforded a separable mixture of the recovered former and the acetate of the latter. The recovered alcohol was oxidized to (6R,1′S,5′R)-sesquisabina ketone (2), whose absolute configuration could be assigned by its CD comparison with (1R,5S)-sabina ketone (4). Conversion of (6R,1′S,5′R)-sesquisabina ketone (2) to the bioactive pheromone revealed the stereostructure of the male aggregation pheromone of the stink bug Erysarcoris lewisi (Distant) to be (2Z,6R,1′S,5′S)-2-methyl-6-(4′-methylenebicyclo[3.1.0]hexyl)hept-2-en-1-ol (sesquisabinen-1-ol, 1).  相似文献   

12.
A reaction of (S)-2-benzyl-2-(α-methylbenzyl)amino-1,3-propanediol (S)-4a and 2-chloroethyl chloroformate, and the subsequent addition of DBU gave (4RS)-4-benzyl-4-hydroxymethyl-3-(α-methylbenzyl)-2-oxazolidinone (4R)-5a (92% de) via a diastereoselective asymmetric desymmetrization process. Debenzylation of (4R)-5a using trifluoromethanesulfonic acid and anisole in MeNO2 gave (R)-4-benzyl-4-hydroxymethyl-2-oxazolidinone (R)-15a, which was converted into (R)-(α-hydroxymethyl)phenylalanine (7) in two steps. N-Boc-α-methylphenylalanine (8), cericlami0ne (9) and BIRT-377 (10) were also synthesized using these asymmetric desymmetrization and debenzylation.  相似文献   

13.
《Tetrahedron: Asymmetry》1999,10(18):3493-3505
Perhydropyrimidinone (S)-1 is alkylated with very high diastereoselectivity to give trans products (2S,5R)-3, (2S,5R)–4 and (2S,5R)-5. Dialkylation of (S)-1 also proceeds with complete stereoselectivity to afford adducts (2S,5R)-6, (2S,5S)-6, (2S,5R)-7 and (2S,5S)-7. Hydrolysis (6N HCl, 100°C) of monoalkylated derivative (2S,5R)-3 gives enantiopure α-substituted β-amino acid (R)-8. Hydrolysis of dialkylated adducts 6 and 7 affords enantiopure α,α-disubstituted β-amino acids (R)- or (S)-9 and (R)- or (S)-10. Related iminoester (2S,6S)-2 is alkylated with complete diastereoselectivity to give products (2S,6S)-1113 whose hydrolysis under relatively mild conditions (2N CF3CO2H, CH3OH, 100°C) affords enantiopure N-benzoylated β,β-disubstituted β-amino acid esters (S)-1416, with intact double bonds in the olefinic substituents.  相似文献   

14.
(1R,2S,6R)-2-Amino-6-hydroxycyclooctanecarboxylic acid (?)-10 was synthesized from (1R,2S)-2-aminocyclooct-5-enecarboxylic acid (+)-2 via an iodolactone intermediate, while (1R,2S,3R,4S)-2-amino-5,6-dihydroxycyclooctanecarboxylic acid (?)-12 was prepared by using the OsO4-catalyzed oxidation of Boc-protected amino ester (?)-5. The stereochemistry and relative configurations of the synthesized compounds were determined by 1D and 2D NMR spectroscopy (based on 2D NOE cross-peaks and 3J(H,H) coupling constants) and X-ray crystallography.  相似文献   

15.
Colchicine mimetic (±)-4S,5R-4-nitro-5-(2,3,4-trimethoxyphenyl)cyclohexene (1) was epoxidized to afford a mixture of epoxides. The epoxides were separately converted in two steps, with high stereoselectivity, to two regioisomeric α-methoxyketones. One regioisomer, (±)-2R,4S,5R-2-methoxy-5-nitro-4-(2,3,4-trimethoxyphenyl)cyclohexanone (17), proved to be about 12-fold more potent than synthetic precursor 1 against HCT-116 tumor cells while the other regioisomer, (±)-2R,4R,5S-2-methoxy-4-nitro-5-(2,3,4-trimethoxyphenyl)cyclohexanone (16), and the synthetic intermediates tested showed no improvement in potency.  相似文献   

16.
Naturally occurring (1S,2R,3R,5R,7aR)-1,2-dihydroxy-3-hydroxymethyl-5-methylpyrrolizidine [(+)-hyacinthacine A6, 2] together with unnatural (1S,2R,3R,7aS)-1,2-dihydroxy-3-hydroxymethylpyrrolizidine [(+)-7a-epi-hyacinthacine A1, 3] and (1S,2R,3R,5S,7aS)-1,2-dihydroxy-3-hydroxymethyl-5-methylpyrrolizidine [(+)-5,7a-diepi-hyacinthacine A6, 4] have been synthesized from a DALDP derivative [5, (2R,3S,4R,5R)-3,4-dibenzyloxy-2′-O-tert-butyldiphenylsilyl-2,5-bis(hydroxymethyl)pyrrolidine], as the homochiral starting material. The synthetic process employed took advantages of Wittig methodology followed by internal lactamization, in the case of (+)-7a-epi-hyacinthacine A1 (3), and reductive amination for (+)-hyacinthacine A6 (2) and (+)-5,7a-diepi-hyacinthacine A6 (4).  相似文献   

17.
(1R,2S,3S,5R,7aR)-1,2-Dihydroxy-3-hydroxymethyl-5-methylpyrrolizidine[(−)-3-epihyacinthacine A5, 1a] and (1S,2R,3R,5S 7aS)-1,2-dihydroxy-3-hydroxymethylpyrrolizidine[(+)-3-epihyacinthacine A5, 1b] have been synthesized either by Wittig's or Horner-Wadsworth-Emmond's (HWE's) methodology using aldehydes 4 and 9, both prepared from (2S,3S,4R,5R)-3,4-dibenzyloxy-2′-O-tert-butyldiphenylsilyl-2,5-bis(hydroxymethyl)pyrrolidine (2, partially protected DADP), and the appropriate ylides, followed by cyclization through an internal reductive amination process of the resulting α,β-unsaturated ketones 5 and 10, respectively, and total deprotection.  相似文献   

18.
The total synthesis of methyl β-d-vicenisaminide 1 has been achieved. In this approach, the synthesis of enantiomerically pure methyl (4R,5S)- and (4S,5R)-4-azido-5-hydroxy-2(E)-hexenoates 2 was established by enzymatic resolution of (±)-anti-5-acetoxy -4-azido-2(E)-hexenoate 4. Another stereogenic center was introduced by base-catalyzed intramolecular conjugate addition of a hemiacetal-derived alkoxide nucleophile obtained by the reaction of methyl (4S,5R)-N-4-tert-butoxycarbonyl-N-methylamino-5-hydroxyl-2(E)-hexenoate 8 and benzaldehyde in the presence of a base.  相似文献   

19.
Machiko Ono  Yuki Shida 《Tetrahedron》2007,63(41):10140-10148
(±)-(4,5-anti)-4-Benzyloxy-5-hydroxy-(2E)-hexenoic acid 6 was subjected to δ-lactonization in the presence of 2,4,6-trichlorobenzoyl chloride and pyridine to give the α,β-unsaturated-δ-lactone congener (±)-7 (87% yield) accompanied by trans-cis isomerization. This δ-lactonization procedure was applied to the chiral synthesis of (+)-(4S,5R)-7 or (−)-(4R,5S)-7 from the chiral starting material (+)-(4S,5R)-6 or (−)-(4R,5S)-6. Deprotection of the benzyl group in (+)-(4S,5R)-7 or (−)-(4R,5S)-7 by the AlCl3/m-xylene system gave the natural osmundalactone (+)-(4S,5R)-5 or (−)-(4R,5S)-5 in good yield, respectively. Condensation of (−)-(4R,5S)-5 and tetraacetyl-β-d-glucosyltrichloroimidate 22 in the presence of BF3·Et2O afforded the condensation product (−)-8 (97% yield), which was identical to tetra-O-acetylosmundalin (−)-8 derived from natural osmundalin 9.  相似文献   

20.
《Tetrahedron: Asymmetry》2007,18(20):2491-2496
The main nitronorbornene adduct derived from the asymmetric Diels–Alder reaction of (S)-benzyl-4-(3-(3-nitroacryloyloxy)-4,4-dimethyl-2-oxopyrrolidin-1-yl)benzoate (S)-1 and cyclopentadiene was isolated and transformed to afford the enantiopure bicyclic β-amino acid (1S,2R,3R,4R)-trans-β-norbornane amino acid 9. The enantiomer (1R,2S,3S,4S)-9 could be obtained by the same synthetic route by using the chiral auxiliary (R)-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号