首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lagrangian relaxations have been used in a variety of IP problem settings. The main thrust of such efforts is to obtain bounding information for use in a branch-and-bound procedure. This paper examines the effect of adding a single surrogate constraint to Lagrangian subproblems in an attempt to improve upon the bounds produced by conventional Lagrangian relaxation. Computational results on some randomly generated set-covering problems are reported.  相似文献   

2.
Polyhedral relaxations have been incorporated in a variety of solvers for the global optimization of mixed-integer nonlinear programs. Currently, these relaxations constitute the dominant approach in global optimization practice. In this paper, we introduce a new relaxation paradigm for global optimization. The proposed framework combines polyhedral and convex nonlinear relaxations, along with fail-safe techniques, convexity identification at each node of the branch-and-bound tree, and learning strategies for automatically selecting and switching between polyhedral and nonlinear relaxations and among different local search algorithms in different parts of the search tree. We report computational experiments with the proposed methodology on widely-used test problem collections from the literature, including 369 problems from GlobalLib, 250 problems from MINLPLib, 980 problems from PrincetonLib, and 142 problems from IBMLib. Results show that incorporating the proposed techniques in the BARON software leads to significant reductions in execution time, and increases by 30% the number of problems that are solvable to global optimality within 500 s on a standard workstation.  相似文献   

3.
Crew scheduling problems at the planning level are typically solved in two steps: first, creating working patterns, and then assigning these to individual crew. The first step is solved with a set covering model, and the second with a set-partitioning model. At the operational level, the (re) planning period is considerably smaller than during the strategic planning phase. We integrate both models to solve time critical crew recovery problems arising on the day of operations. We describe how pairing construction and pairing assignment are done in a single step, and provide solution techniques based on simple tree search and more sophisticated column generation and shortest-path algorithms.  相似文献   

4.
The present work is intended as a first step towards applying semidefinite programming models and tools to discrete lot-sizing problems including sequence-dependent changeover costs and times. Such problems can be formulated as quadratically constrained quadratic binary programs. We investigate several semidefinite relaxations by combining known reformulation techniques recently proposed for generic quadratic binary problems with problem-specific strengthening procedures developed for lot-sizing problems. Our computational results show that the semidefinite relaxations consistently provide lower bounds of significantly improved quality as compared with those provided by the best previously published linear relaxations. In particular, the gap between the semidefinite relaxation and the optimal integer solution value can be closed for a significant proportion of the small-size instances, thus avoiding to resort to a tree search procedure. The reported computation times are significant. However improvements in SDP technology can still be expected in the future, making SDP based approaches to discrete lot-sizing more competitive.  相似文献   

5.
This paper addresses the global optimization of problems which contain convex-transformable functions. We present algorithms for identification of convex-transformable functions in general nonconvex problems, and introduce a new class of cutting planes based on recently developed relaxations for convex-transformable functions. These cutting planes correspond to the supporting hyperplanes of these convex relaxations. We integrate our recognition and cutting plane generation algorithms into the global solver BARON, and test our implementation by conducting numerical experiments on a large collection of nonconvex problems. Results demonstrate that the proposed implementation accelerates the convergence speed of the branch-and-bound algorithm, by significantly reducing computational time, number of nodes in the search tree, and required memory.  相似文献   

6.
In this paper, we consider a special class of nonconvex programming problems for which the objective function and constraints are defined in terms of general nonconvex factorable functions. We propose a branch-and-bound approach based on linear programming relaxations generated through various approximation schemes that utilize, for example, the Mean-Value Theorem and Chebyshev interpolation polynomials coordinated with a Reformulation-Linearization Technique (RLT). A suitable partitioning process is proposed that induces convergence to a global optimum. The algorithm has been implemented in C++ and some preliminary computational results are reported on a set of fifteen engineering process control and design test problems from various sources in the literature. The results indicate that the proposed procedure generates tight relaxations, even via the initial node linear program itself. Furthermore, for nine of these fifteen problems, the application of a local search method that is initialized at the LP relaxation solution produced the actual global optimum at the initial node of the enumeration tree. Moreover, for two test cases, the global optimum found improves upon the solutions previously reported in the source literature. Received: January 14, 1998 / Accepted: June 7, 1999?Published online December 15, 2000  相似文献   

7.
The multiconstraint 0–1 knapsack problem is encountered when one has to decide how to use a knapsack with multiple resource constraints. Even though the single constraint version of this problem has received a lot of attention, the multiconstraint knapsack problem has been seldom addressed. This paper deals with developing an effective solution procedure for the multiconstraint knapsack problem. Various relaxation of the problem are suggested and theoretical relations between these relaxations are pointed out. Detailed computational experiments are carried out to compare bounds produced by these relaxations. New algorithms for obtaining surrogate bounds are developed and tested. Rules for reducing problem size are suggested and shown to be effective through computational tests. Different separation, branching and bounding rules are compared using an experimental branch and bound code. An efficient branch and bound procedure is developed, tested and compared with two previously developed optimal algorithms. Solution times with the new procedure are found to be considerably lower. This procedure can also be used as a heuristic for large problems by early termination of the search tree. This scheme was tested and found to be very effective.  相似文献   

8.
In this paper we present two lower bounds for the p-median problem, the problem of locating p facilities (medians) on a network. These bounds are based on two separate lagrangean relaxations of a zero-one formulation of the problem with subgradient optimisation being used to maximise these bounds. Penalty tests based on these lower bounds and a heuristically determined upper bound to the problem are developed and shown to result in a large reduction in problem size. The incorporation of the lower bounds and the penalty tests into a tree search procedure is described and computational results are given for problems with an arbitrary number of medians and having up to 200 vertices. A comparison is also made between these algorithms and the dual-based algorithm of Erlenkotter.  相似文献   

9.
Semidefinite programming (SDP) has recently turned out to be a very powerful tool for approximating some NP-hard problems. The nature of the quadratic assignment problem (QAP) suggests SDP as a way to derive tractable relaxations. We recall some SDP relaxations of QAP and solve them approximately using a dynamic version of the bundle method. The computational results demonstrate the efficiency of the approach. Our bounds are currently among the strongest ones available for QAP. We investigate their potential for branch and bound settings by looking also at the bounds in the first levels of the branching tree.   相似文献   

10.
The crew pairing problem is posed as a set partitioning zero-one integer program. Variables are generated as legal pairings meeting all work rules. Dual values obtained from solving successive large linear program relaxations are used to prune the search tree. In this paper we present a graph based branching heuristic applied to a restricted set partitioning problem representing a collection of ‘best’ pairings. The algorithm exploits the natural integer properties of the crew pairing problem. Computational results are presented to show realized crew cost savings.  相似文献   

11.
This paper presents rigorous filtering methods for continuous constraint satisfaction problems based on linear relaxations, designed to efficiently handle the linear inequalities coming from a linear relaxation of quadratic constraints. Filtering or pruning stands for reducing the search space of constraint satisfaction problems. Discussed are old and new approaches for rigorously enclosing the solution set of linear systems of inequalities, as well as different methods for computing linear relaxations. This allows custom combinations of relaxation and filtering. Care is taken to ensure that all methods correctly account for rounding errors in the computations. The methods are implemented in the GloptLab environment for solving quadratic constraint satisfaction problems. Demonstrative examples and tests comparing the different linear relaxation methods are also presented.  相似文献   

12.
In this paper a linear time heuristic for a class of cyclic staffing problems with breaks is described. A novel feature of the heuristic is that the quality of the heuristic solution increases as the requirements for each period become more uniform. As a by-product of this work, a new class of polynomially solvable set-covering problems is identified.  相似文献   

13.
A lot of minimization covering problems on graphs consist in covering vertices or edges by subgraphs verifying a certain property. These problems can be seen as particular cases of set-covering. If the number of subgraphs is polynomial in the order n of the input-graph, then these problems can be approximated within logarithmic ratio by the classical greedy set-covering algorithm. We extend the class of problems approximable by this approach to covering problems where the number of candidate subgraphs is exponential in n, by revisiting an old technique called master-slave and extending it to weighted master or/and slave problems. Finally, we use the master-slave tool to prove some positive approximation results for two network-design and a VLSI-design graph-problems.  相似文献   

14.
On Steiner trees and minimum spanning trees in hypergraphs   总被引:3,自引:0,他引:3  
The bottleneck of the state-of-the-art algorithms for geometric Steiner problems is usually the concatenation phase, where the prevailing approach treats the generated full Steiner trees as edges of a hypergraph and uses an LP-relaxation of the minimum spanning tree in hypergraph (MSTH) problem. We study this original and some new equivalent relaxations of this problem and clarify their relations to all classical relaxations of the Steiner problem. In an experimental study, an algorithm of ours which is designed for general graphs turns out to be an efficient alternative to the MSTH approach.  相似文献   

15.
In this research, two crucial optimization problems of berth allocation and yard assignment in the context of bulk ports are studied. We discuss how these problems are interrelated and can be combined and solved as a single large scale optimization problem. More importantly we highlight the differences in operations between bulk ports and container terminals which highlights the need to devise specific solutions for bulk ports. The objective is to minimize the total service time of vessels berthing at the port. We propose an exact solution algorithm based on a branch and price framework to solve the integrated problem. In the proposed model, the master problem is formulated as a set-partitioning problem, and subproblems to identify columns with negative reduced costs are solved using mixed integer programming. To obtain sub-optimal solutions quickly, a metaheuristic approach based on critical-shaking neighborhood search is presented. The proposed algorithms are tested and validated through numerical experiments based on instances inspired from real bulk port data. The results indicate that the algorithms can be successfully used to solve instances containing up to 40 vessels within reasonable computational time.  相似文献   

16.
In connection with the optimal design of centralized circuit-free networks linear 0–1 programming problems arise which are related to rooted trees. For each problem the variables correspond to the edges of a given rooted tree T. Each path from a leaf to the root of T, together with edge weights, defines a linear constraint, and a global linear objective is to be maximized. We consider relaxations of such problems where the variables are not restricted to 0 or 1 but are allowed to vary continouosly between these bounds. The values of the optimal solutions of such relaxations may be used in a branch and bound procedure for the original 0–1 problem. While in [10] a primal algorithm for these relaxations is discussed, in this paper, we deal with the dual linear program and present a version of the simplex algorithm for its solution which can be implemented to run in time O(n2). For balanced trees T this time can be reduced to O(n log n).  相似文献   

17.
Convex and concave relaxations are used extensively in global optimization algorithms. Among the various techniques available for generating relaxations of a given function, McCormick’s relaxations are attractive due to the recursive nature of their definition, which affords wide applicability and easy implementation computationally. Furthermore, these relaxations are typically stronger than those resulting from convexification or linearization procedures. This article leverages the recursive nature of McCormick’s relaxations to define a generalized form which both affords a new framework within which to analyze the properties of McCormick’s relaxations, and extends the applicability of McCormick’s technique to challenging open problems in global optimization. Specifically, relaxations of the parametric solutions of ordinary differential equations are considered in detail, and prospects for relaxations of the parametric solutions of nonlinear algebraic equations are discussed. For the case of ODEs, a complete computational procedure for evaluating convex and concave relaxations of the parametric solutions is described. Through McCormick’s composition rule, these relaxations may be used to construct relaxations for very general optimal control problems.  相似文献   

18.
Clustering problems with relational constraints in which the underlying graph is a tree arise in a variety of applications: hierarchical data base paging, communication and distribution networks, districting, biological taxonomy, and others. They are formulated here as optimal tree partitioning problems. In a previous paper, it was shown that their computational complexity strongly depends on the nature of the objective function and, in particular, that minimizing the total within-cluster dissimilarity or the diameter is computationally hard. We propose heuristics that find good partitions within a reasonable time, even for instances of relatively large size. Such heuristics are based on the solution of continuous relaxations of certain integer (or almost integer) linear programs. Experimental results on over 2000 randomly generated instances with up to 500 entities show that the values (total within-cluster dissimilarity or diameter) of the solutions provided by these heuristics are quite close to the minimum one.  相似文献   

19.
This paper presents a hybrid metaheuristic approach (HMA) for solving the unconstrained binary quadratic programming (UBQP) problem. By incorporating a tabu search procedure into the framework of evolutionary algorithms, the proposed approach exhibits several distinguishing features, including a diversification-based combination operator and a distance-and-quality based replacement criterion for pool updating. The proposed algorithm is able to easily obtain the best known solutions for 31 large random instances up to 7000 variables (which no previous algorithm has done) and find new best solutions for three of nine instances derived from the set-partitioning problem, demonstrating the efficacy of our proposed algorithm in terms of both solution quality and computational efficiency. Furthermore, some key elements and properties of the HMA algorithm are also analyzed.  相似文献   

20.
In this paper, we propose mechanisms to improve instantiation heuristics by incorporating weighted factors on variables. The proposed weight-based heuristics are evaluated on several tree search methods such as chronological backtracking and discrepancy-based search for both constraint satisfaction and optimization problems. Experiments are carried out on random constraint satisfaction problems, car sequencing problems, and jobshop scheduling with time-lags, considering various parameter settings and variants of the methods.The results show that weighting mechanisms reduce the tree size and then speed up the solving time, especially for the discrepancy-based search method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号