首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The application of aptamers in biomedicine is emerging as an essential technology in the field of cancer research. As small single-stranded DNA or RNA ligands with high specificity and low immunogenicity for their targets, aptamers provide many advantages in cancer therapeutics over protein-based molecules, such as antibodies. Vimentin is an intermediate filament protein that is overexpressed in endothelial cells of cancerous tissue. High expression levels of vimentin have been associated with increased capacity for migration and invasion of the tumor cells. We have selected and identified thioated aptamers with high specificity for vimentin using human ovarian cancer tissues. Tentative binding motifs were chosen for two vimentin aptamers based on predicted secondary structures. Each of these shorter, tentative binding motifs was synthesized, purified, and characterized via cell binding assays. Two vimentin binding motifs with high fidelity binding were selected and further characterized via cell and tissue binding assays, as well as flow cytometric analysis. The equilibrium binding constants of these small thioated aptamer constructs were also determined. Future applications for the vimentin binding aptamer motifs include conjugation of the aptamers to synthetic dyes for use in targeted imaging and therapy, and ultimately more detailed and precise monitoring of treatment response and tumor progression in ovarian pathology.  相似文献   

2.
Aptamers are synthetic, relatively short (e.g., 20-80 bases) RNA or ssDNA oligonucleotides that can bind targets with high affinity and specificity, similar to antibodies, because they can fold into unique, three-dimensional shapes. For use in various assays and experiments, aptamers have been conjugated with biotin or digoxigenin to form complexes with avidin or anti-digoxigenin antibodies, respectively. In this study, we developed a method to label the 5'' ends of aptamers with cotinine, which allows formation of a stable complex with anti-cotinine antibodies for the purpose of providing another affinity unit for the application in biological assays using aptamers. To demonstrate the functionality of this affinity unit in biological assays, we utilized two well-known aptamers: AS1411, which binds nucleolin, and pegaptanib, which binds vascular endothelial growth factor. Cotinine-conjugated AS1411/anti-cotinine antibody complexes were successfully applied to immunoblot, immunoprecipitation, and flow cytometric analyses, and cotinine-conjugated pegaptanib/anti-cotinine antibody complexes were used successfully in enzyme immunoassays. Our results show that cotinine-conjugated aptamer/anti-cotinine antibody complexes are an effective alternative and complementary technique for aptamer use in multiple assays and experiments.  相似文献   

3.
Aptamers are DNA (or RNA) ligands selected from large libraries of random DNA sequences and capable of binding different classes of targets with high affinity and selectivity. Both the chances for the aptamer to be selected and the quality of the selected aptamer are largely dependent on the method of selection. Here we introduce selection of aptamers by nonequilibrium capillary electrophoresis of equilibrium mixtures (NECEEM). The new method has a number of advantages over conventional approaches. First, NECEEM-based selection has exceptionally high efficiency, which allows aptamer development with fewer rounds of selection. Second, NECEEM can be equally used for selecting aptamers and finding their binding parameters. Finally, due to its comprehensive kinetic capabilities, the new method can potentially facilitate selection of aptamers with predefined K(d), k(off), and k(on) of the aptamer-target interaction. In this proof-of-principle work, we describe the theoretical bases of the method and demonstrate its application to a one-step selection of DNA aptamers with nanomolar affinity for protein farnesyltransferase.  相似文献   

4.
核酸适体被称为“化学抗体”, 具有与抗体类似或更加优异的特异性和亲和力, 可以精准地靶向靶蛋白, 与靶蛋白特异性结合. 此外, 核酸适体还具有获取简单、 合成简便、 易于进行化学修饰、 不易变性、 靶标范围广、 免疫原性低及细胞内化快等优点, 已被广泛应用于众多研究领域. 在癌症治疗领域, 核酸适体作为一种优异的靶向识别工具和药物递送载体, 可实现抗肿瘤药物的精准递送. 将核酸适体与药物分子偶联, 可通过核酸适体的靶向作用使药物分子随核酸适体共同进入靶细胞, 实现药物分子在靶细胞内的富集, 进而促进靶细胞的死亡. 近年来, 核酸适体偶联药物已成为癌症靶向治疗的前沿新兴领域, 希望通过该领域的深入研究为癌症靶向治疗领域提供新思路. 本文综合评述了以生物偶联技术构建的核酸适体偶联药物及其应用研究.  相似文献   

5.
6.
The systematic evolution of ligands by exponential enrichment (SELEX) is a combinatorial oligonucleotide library-based in vitro selection approach in which DNA or RNA molecules are selected by their ability to bind their targets with high affinity and specificity, comparable to those of antibodies. Nucleic acids with high affinity for their targets have been selected against a wide variety of compounds, from small molecules, such as ATP, to membrane proteins and even whole organisms. Recently, the use of the SELEX technique was extended to isolate oligonucleotide ligands, also known as aptamers, for a wide range of proteins of importance for therapy and diagnostics, such as growth factors and cell surface antigens. The number of aptamers generated as inhibitors of various target proteins has increased following automatization of the SELEX process. Their diagnostic and therapeutic efficacy can be enhanced by introducing chemical modifications into the oligonucleotides to provide resistance against enzymatic degradation in body fluids. Several aptamers are currently being tested in preclinical and clinical trials, and aptamers are in the process of becoming a new class of therapeutic agents. Recently, the anti-VEGF aptamer pegaptanib received FDA approval for treatment of human ocular vascular disease.  相似文献   

7.
Nucleic acid aptamers have been shown many unique applications as excellent probes in molecular recognition. However, few examples are reported which show that aptamers can be internalized inside living cells for aptamer functional studies and for targeted intracellular delivery. This is mainly due to the limited number of aptamers available for cell-specific recognition, and the lack of research on their extra- and intracellular functions. One of the major difficulties in aptamers' in vivo application is that most of aptamers, unlike small molecules, cannot be directly taken up by cells without external assistance. In this work, we have studied a newly developed and cell-specific DNA aptamer, sgc8. This aptamer has been selected through a novel cell selection process (cell-SELEX), in which whole intact cells are used as targets while another related cell line is used as a negative control. The cell-SELEX enables generation of multiple aptamers for molecular recognition of the target cells and has significant advantages in discovering cell surface binding molecules for the selected aptamers. We have studied the cellular internalization of one of the selected aptamers. Our results show that sgc8 is internalized efficiently and specifically to the lymphoblastic leukemia cells. The internalized sgc8 aptamers are located inside the endosome. Comparison studies are done with the antibody for the binding protein of sgc8, PTK7 (Human protein tyrosine kinase-7) on cell surface. We also studied the internalization kinetics of both the aptamer and the antibody for the same protein on the living cell surface. We have further evaluated the effects of sgc8 on cell viability, and no cytotoxicity is observed. This study indicates that sgc8 is a promising agent for cell-type specific intracellular delivery.  相似文献   

8.
Chloramphenicol (CAP) has been widely used to treat bacterial infections in livestock and aquatic animals. To reduce the risk of CAP residues, an efficient technology to rapidly detect CAP residues in animal-sourced food is expressly needed. In this study, magnetic bead-based systematic evolution of ligands by exponential enrichment (Mag-SELEX) strategy was performed to select and identify CAP-specific single-stranded DNA (ssDNA) aptamers from a random oligonucleotide library. After nine rounds of selection, five potential ssDNA aptamers were selected. Low homology indicated that they might belong to different families. To identify an aptamer with the highest affinity for CAP, the dissociation constant (K d) values of these selected aptamers were determined. The lowest K d values of two potential aptamers (i.e., No. 4 and No. 5) were, respectively, 0.10162 ± 0.0111 and 0.03224 ± 0.00819 μM, which were much lower than previously reported lowest K d value (i.e., 0.766 μM) of CAP aptamer. Moreover, compared with No. 4, aptamer No. 5 had higher binding rate, which is quite different among those with CAP and with CAP’s structural analogs (i.e., thiamphenicol (TAP) and florfenicol (FF)). These results indicated that the potential aptamer No. 5 with highest specificity and affinity for CAP would be an ideal aptamer for future detection of residual CAP in animal-sourced food.  相似文献   

9.
We have investigated the effect of the folding of DNA aptamers on the colloidal stability of gold nanoparticles (AuNPs) to which an aptamer is tethered. On the basis of the studies of two different aptamers (adenosine aptamer and K+ aptamer), we discovered a unique colloidal stabilization effect associated with aptamer folding: AuNPs to which folded aptamer structures are attached are more stable toward salt-induced aggregation than those tethered to unfolded aptamers. This colloidal stabilization effect is more significant when a DNA spacer was incorporated between AuNP and the aptamer or when lower aptamer surface graft densities were used. The conformation that aptamers adopt on the surface appears to be a key factor that determines the relative stability of different AuNPs. Dynamic light scattering experiments revealed that the sizes of AuNPs modified with folded aptamers were larger than those of AuNPs modified with unfolded (but largely collapsed) aptamers in salt solution. From both the electrostatic and steric stabilization points of view, the folded aptamers that are more extended from the surface have a higher stabilization effect on AuNP than the unfolded aptamers. On the basis of this unique phenomenon, colorimetric biosensors have been developed for the detection of adenosine, K+, adenosine deaminase, and its inhibitors. Moreover, distinct AuNP aggregation and redispersion stages can be readily operated by controlling aptamer folding and unfolding states with the addition of adenosine and adenosine deaminase.  相似文献   

10.
陈尔凝  赵新颖  屈锋 《色谱》2016,34(4):389-396
核酸适配体(aptamer)是通过指数富集配体系统进化技术(SELEX)筛选的能够以高亲和力和高特异性识别靶标分子或细胞的核糖核酸(RNA)和单链脱氧核糖核酸(ssDNA)。作为化学抗体,核酸适配体的制备和合成比抗体的成本更低。核酸适配体的靶标范围极其广泛,包括小分子、生物大分子、细菌和细胞等。针对细菌靶标筛选的适配体,目前主要应用于食品、医药和环境中的细菌检测。细菌的核酸适配体筛选可以通过离心法将菌体-适配体复合物与游离的适配体分离,并通过荧光成像、荧光光谱分析、流式细胞仪分选、DNA捕获元件、酶联适配体分析等方法表征适配体与靶标的相互作用。筛选出的适配体可结合生物、化学检测方法用于细菌检测。本文介绍了细菌适配体的筛选和表征方法以及基于适配体的检测方法的最新进展,分析了不同检测方法的利弊,并列出了2011~2015年筛选的细菌的核酸适配体。  相似文献   

11.
Structure-switching, fluorescence-signaling DNA and RNA aptamers have been reported as highly versatile molecular recognition elements for biosensor development. While structure-switching DNA aptamers have been utilized for solid-phase sensing, equivalent RNA aptamers have yet to be successfully utilized in solid-phase sensors due to their lack of chemical stability and susceptibility to nuclease attack. In this study, we examined entrapment into sol-gel derived organic-inorganic composite materials as a platform for immobilization of structure-switching fluorescence-signaling RNA aptamer reporters, using both the synthetic theophylline- and naturally occurring thiamine pyrophosphate-binding RNA aptamers as test cases. Structure-switching versions of both aptamers were entrapped into a series of sol-gel derived composites, ranging from highly polar silica to hydrophobic methylsilsesquioxane-based materials, and the target-binding and signaling capabilities of these immobilized aptamers were assessed relative to solution. Both immobilized aptamers demonstrated sensitivity and selectivity similar to that of free aptamers when entrapped in a composite material derived from 40% (v/v) methyltrimethoxysilane/tetramethoxysilane. Importantly, this material also conferred protection from nuclease degradation and imparted long-term chemical stability to the RNA reporter systems. Given the versatility of sol-gel entrapment for development of biosensors, microarrays, bioaffinity columns, and other devices, this entrapment method should provide a useful platform for numerous solid-phase RNA aptamer-based devices.  相似文献   

12.
多肽在生命体的生理过程中发挥着重要作用,其生理功能一直是生物学、药理学和医学等领域的重要研究内容.核酸适配体是经体外筛选获得的单链DNA或RNA,能与靶标高亲和力、高特异性地结合,有"化学抗体"或"化学家的抗体"之称.以多肽为靶标筛选获得的核酸适配体主要有两大用途:一是基于其识别功能,作为亲和试剂来建立分析检测方法或开展生物成像研究;二是基于它们的生物学活性,作为拮抗剂在活体水平影响靶标多肽的正常功能,阻碍下游信号通路,从而对疾病进行治疗.本文总结了近年来以多肽为靶标筛选的核酸适配体在体内及体外的用途,并探讨了其在筛选、表征及应用中存在的问题,并对其未来的发展趋势进行了展望.  相似文献   

13.
The development of novel affinity probes for cancer biomarkers may enable powerful improvements in analytical methods for detecting and treating cancer. In this report, we describe our use of capillary electrophoresis (CE) as the separation mechanism in the process of selecting DNA aptamers with affinity for the ovarian cancer biomarker HE4. Rather than the conventional use of cloning and sequencing as the last step in the aptamer selection process, we used high-throughput sequencing on an Illumina platform. This data-rich approach, combined with a bioinformatics pipeline based on freely available computational tools, enabled the entirety of the selection process—and not only its endpoint—to be characterized. Affinity probe CE and fluorescence anisotropy assays demonstrate the binding affinity of a set of aptamer candidates identified through this bioinformatics approach.
Graphical Abstract A population of candidate aptamers is sequenced on an Illumina platform, enabling the process by which aptamers are selected over multiple SELEX rounds to be characterized. Bioinformatics tools are used to identify enrichment of selected aptamers and groupings into clusters based on sequence and structural similarity. A subset of sequenced aptamers may be intelligently chosen for in vitro testing.
  相似文献   

14.
Nucleic acid aptamers are short synthetic DNA or RNA sequences that can bind to a wide range of targets with high affinity and specificity. In recent years, aptamers have attracted increasing research interest due to their unique features of high binding affinity and specificity, small size, excellent chemical stability, easy chemical synthesis, facile modification, and minimal immunogenicity. These properties make aptamers ideal recognition ligands for bioanalysis, disease diagnosis, and cancer therapy. This review highlights the recent progress in aptamer selection and the latest applications of aptamer‐based functional probes in the fields of bioanalysis and biomedicine.  相似文献   

15.
The development of aptamer technology considerably broadens the utility of nucleic acids as molecular recognition elements, because it allows the creation of DNA or RNA molecules for binding a wide variety of analytes (targets) with high affinity and specificity. Several recent studies have focused on developing rational design strategies for transducing aptamer-target recognition events into easily detectable signals, so that aptamers can be widely exploited for detection directed applications. We have devised a generalizable strategy for designing nonfluorescent aptamers that can be turned into fluorescence-signaling reporters. The resultant signaling probes are denoted "structure-switching signaling aptamers" as they report target binding by switching structures from DNA/DNA duplex to DNA/target complex. The duplex is formed between a fluorophore-labeled DNA aptamer and an antisense DNA oligonucleotide modified with a quencher (denoted QDNA). In the absence of the target, the aptamer hybridizes with QDNA, bringing the fluorophore into close proximity of the quencher for efficient fluorescence quenching. When this system is exposed to the target, the aptamer switches its binding partner from QDNA to the target. This structure-switching event is coupled to the generation of a fluorescent signal through the departure of QDNA, permitting the real-time monitoring of the aptamer-target recognition. In this article, we discuss the conceptual framework of the structure-switching approach, the essential features of structure-switching signaling aptamers as well as remaining challenges and possible solutions associated with this new methodology.  相似文献   

16.
DNA aptamers are single stranded DNA (ssDNA) molecules artificially selected from random-sequence DNA libraries for their specific binding to a certain target. DNA aptamers have a number of advantages over antibodies and promise to replace them in both diagnostic and therapeutic applications. The development of DNA aptamers involves three major stages: library enrichment, obtaining individual DNA clones, and the affinity screening of the clones. The purpose of the screening is to obtain the nucleotide sequences of aptamers and the binding parameters of their interaction with the target. Highly efficient approaches have been recently developed for the first two stages, while the third stage remained the rate-limiting one. Here, we introduce a new method for affinity screening of individual DNA aptamer clones. The proposed method amalgamates: (i) aptamer amplification by asymmetric PCR (PCR with a primer ratio different from unity), (ii) analysis of aptamer-target interaction, combining in-capillary mixing of reactants by transverse diffusion of laminar flow profiles (TDLFP) and affinity analysis using kinetic capillary electrophoresis (KCE), and (iii) sequencing of only aptamers with satisfying binding parameters. For the first time we showed that aptamer clones can be directly used in TDLFP/KCE-based affinity analysis without an additional purification step after asymmetric PCR amplification. We also demonstrated that mathematical modeling of TDLFP-based mixing allows for the determination of Kd values for the in-capillary reaction of an aptamer and a target and that the obtained Kd values can be used for the accurate affinity ranking of aptamers. The proposed method does not require the knowledge of aptamer sequences before screening, avoids lengthy (3-5 h) purification steps of aptamer clones, and minimizes reagent consumption to nanoliters.  相似文献   

17.
杨歌  魏强  赵新颖  屈锋 《色谱》2016,34(4):370-381
核酸适配体是通过指数富集系统配体进化(SELEX)筛选获得的,与靶标具有高亲和力和特异性结合的单链DNA或RNA。蛋白质是生命进程中的关键功能分子。近年来,以蛋白质为靶标的适配体筛选在蛋白质相关的基础及应用研究领域受到广泛关注。核酸适配体应用性能的优劣取决于其亲和力、特异性与稳定性。目前,适配体筛选方法的优化主要是提高筛选效率、提升适配体性能及降低筛选成本。适配体主要筛选步骤包括复合物分离、核酸库优化、次级库的富集、适配体序列分析以及亲和力表征等。迄今为止,以蛋白质-核酸复合物的分离为核心步骤的适配体筛选方法有20余种。本文归纳总结了2005年以来以蛋白质为靶标的适配体筛选技术,讨论了各方法的缺陷与局限。介绍了核酸库的设计优化方法、适配体的序列特征,以及常用的亲和力表征方法。  相似文献   

18.
Surface immobilization methods for aptamer diagnostic applications   总被引:1,自引:0,他引:1  
In this review we examine various methods for the immobilization of aptamers onto different substrates that can be utilized in a diverse array of analytical formats. In most cases, covalent linking to surfaces is preferred over physisorption, which is reflected in the bulk of the reports covered within this review. Conjugation of aptamers with appropriate linkers directly to gold films or particles is discussed first, followed by methods for conjugating aptamers to functionally modified surfaces. In many aptamer-based applications, silicates and silicon oxide surfaces provide an advantage over metallic substrates, and generally require surface modification prior to covalent attachment of the aptamers. Chemical protocols for covalent attachment of aptamers to functionalized surfaces are summarized in the review, showing common pathways employed for aptamer immobilization on different surfaces. Biocoatings, such as avidin or one of its derivatives, have been shown to be highly successful for immobilizing biotin-tethered aptamers on various surfaces (e.g., gold, silicates, polymers). There are also a few examples reported of aptamer immobilization on other novel substrates, such as quantum dots, carbon nanotubes, and carbohydrates. This review covers the literature on aptamer immobilization up to March 2007, including comparison of different linkers of varying size and chemical structure, 3′ versus 5′ attachment, and regeneration methods of aptamers on surfaces.  相似文献   

19.
Purines and their derivatives are highly important molecules in biology for nucleic acid synthesis, energy storage, and signaling. Although many DNA aptamers have been obtained for binding adenine derivatives such as adenosine, adenosine monophosphate, and adenosine triphosphate, success for the specific binding of guanosine has been limited. Instead of performing new aptamer selections, we report herein a base-excision strategy to engineer existing aptamers to bind guanosine. Both a Na+-binding aptamer and the classical adenosine aptamer have been manipulated as base-excising scaffolds. A total of seven guanosine aptamers were designed, of which the G16-deleted Na+ aptamer showed the highest bindng specificity and affinity for guanosine with an apparent dissociation constant of 0.78 mm . Single monophosphate difference in the target molecule was also recognizable. The generality of both the aptamer scaffold and excised site were systematically studied. Overall, this work provides a few guanosine binding aptamers by using a non-SELEX method. It also provides deeper insights into the engineering of aptamers for molecular recognition.  相似文献   

20.
The high affinity and specificity of aptamers make them ideal reagents for a wide range of analytical applications. It is not surprising that they are finding application in microfluidics as well. CE has proven to be an efficient technique for isolating aptamers. Aptamers have been used as affinity reagents in CE assays. Aptamer-based chromatography stationary phases have demonstrated unique selectivities. Possibly the application that holds the highest potential is aptamer microarrays for screening proteomic samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号