首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We study the vibrational energy diffusion in single-walled carbon nanotubes by using the molecular-dynamics method. It is found that energy transports ballistically at low temperature and superdiffusively at room temperature. The velocity of energy transport along the axis in carbon nanotube at room temperature is about 0.10 A/fs. It is also found that energy transport in carbon nanotube is different from that one in one-dimensional carbon lattice with the same interaction potential.  相似文献   

2.
Transport properties including collective and tracer diffusivities of nitrogen, modeled as a diatomic molecule, in single walled carbon nanotubes have been studied by equilibrium molecular dynamics at different temperatures and as a function of pressure. It is shown that while the asymptotic decay of the translational and rotational velocity autocorrelation function is algebraic, the collective velocity decays exponentially with the relaxation time related to the interfacial friction. The tracer diffusivity in the nanochannel, which is comparable in magnitude with diffusivity in the equilibrium bulk phase, depends only weakly on the conditions at the fluid-solid interface, whereas the collective diffusivity is a strong function of the hydrodynamic boundary conditions and is found to be three orders of magnitude higher than self-diffusivity in carbon nanotubes and for the comparatively rough surface of the rare-gas tube it is one order of magnitude greater. A relationship between the collective diffusivity and the Maxwell coefficient describing wall collisions is obtained. The transport coefficients appear to be insensitive to the long-range details of the potential function.  相似文献   

3.
We study the self-diffusion of simple gases inside single-walled carbon nanotubes at the zero-loading limit by molecular dynamics simulations. The host-framework flexibility influence is taken into account. In particular, we study the influences of nanotube size and temperature. For the carbon-nanotube radius-dependent self-diffusivities, a maximum is observed, which resembles the so-called levitation effect. This occurs for pores having a radius comparable to the position of the interaction-energy minimum. Surprisingly, the temperature influence is not uniform throughout different pore sizes. Diffusivities are expected to increase with temperature. This effect is observed for carbon nanotubes distinctly larger than the guest molecules. Remarkably, for smaller pores, the self-diffusivities decrease with increasing temperature or exhibit a maximum in the temperature dependence. This effect is caused by competing influences of collision frequency and temperature.  相似文献   

4.
The authors have used atomistic molecular dynamics (MD) simulations to study the structure and dynamics of water molecules inside an open ended carbon nanotube placed in a bath of water molecules. The size of the nanotube allows only a single file of water molecules inside the nanotube. The water molecules inside the nanotube show solidlike ordering at room temperature, which they quantify by calculating the pair correlation function. It is shown that even for the longest observation times, the mode of diffusion of the water molecules inside the nanotube is Fickian and not subdiffusive. They also propose a one-dimensional random walk model for the diffusion of the water molecules inside the nanotube. They find good agreement between the mean-square displacements calculated from the random walk model and from MD simulations, thereby confirming that the water molecules undergo normal mode diffusion inside the nanotube. They attribute this behavior to strong positional correlations that cause all the water molecules inside the nanotube to move collectively as a single object. The average residence time of the water molecules inside the nanotube is shown to scale quadratically with the nanotube length.  相似文献   

5.
Using molecular simulation, the adsorption and self-diffusion of diatomic nitrogen molecules inside a single wall carbon nanotube have been studied over a range of nanotube diameters (8.61-15.66 A) and loadings at temperatures of 100 and 298 K. Nitrogen adsorption energy is found to increase as the nanotube diameter is reduced toward the molecular diameter of nitrogen. A discrete organization of the nitrogen into adsorbed layers is observed at high loadings that follows a regular progression determined primarily by geometric considerations. The formation of an adsorbate core at the center of the nanotube is found to increase the self-diffusion of nitrogen. A "wormlike" phase is found for the adsorbed nitrogen in the (15, 0) carbon nanotube at high loadings and at 100 K.  相似文献   

6.
We model and simulate gas flow through nanopores using a single-walled carbon nanotube model. Efficient protocols for the simulation of methane molecules in nanotubes are developed and validated for both the self-diffusivity, following a pulse perturbation, and for the transport diffusivity in an imposed concentration gradient. The former is found to be at least an order of magnitude lower than the latter, and to decline with increasing initial pressure, while the latter increases as the pressure gradient increases until it reaches an asymptotic value. Our previous analytic model, developed for single-file diffusion in narrow pores, is extended to wider pores for the case of single species transport. The model, which predicts the observed numerical results invokes four regimes of transport. The dominant transport is by ballistic motion near the wall in not too wide nanotubes when a pressure gradient or concentration is imposed; this mode is absent in the case of self-diffusion due to periodic boundary conditions. We also present results from systematic comparisons of flexible versus rigid tubes and explicit atom versus effective atomic potentials.  相似文献   

7.
Direct measurement of ion diffusion in aligned, densified single-walled carbon nanotube electrodes showed that the diffusion coefficient for transport of ions (KSCN in acetonitrile) parallel to the alignment direction of the nanotubes was close to the theoretical limit of perfectly straight pores, achieving a value 20 times larger than that of activated carbon electrodes (1 × 10(-5) vs 5 × 10(-7) cm(2)/s). In contrast, the diffusion coefficient for ion transport perpendicular to the alignment direction was an order of magnitude smaller (8 × 10(-7) cm(2)/s). As an example of the ramifications of this anisotropic diffusion phenomenon, the difference in performance of the aligned carbon nanotubes as electrochemical-capacitor electrodes was evaluated. At low discharge rates, the performances of the two orientations were identical, but as the discharge rate was increased, a more rapid decline in capacitance was observed for the perpendicular orientation (66 vs 14% decline in capacitance when the discharge current was increased from 0.01 to 1 A/g). Furthermore, the maximum power rating of the perpendicular electrode was lower than that of the parallel electrode (1.85 vs 3 kW/kg during operation at 1 V).  相似文献   

8.
Rapid diffusion of CH4/H2 mixtures in single-walled carbon nanotubes   总被引:1,自引:0,他引:1  
Equilibrium molecular dynamics (EMD) are used to examine the self-diffusion and macroscopic diffusion of CH4/H2 mixtures adsorbed inside a (10,10) single-walled carbon nanotube. EMD can be used to determine the macroscopic diffusion coefficients of adsorbed mixtures by evaluating the matrix of Onsager transport coefficients. Earlier studies have indicated the diffusion of light gases adsorbed as single components in carbon nanotubes is extremely rapid compared to that in other known nanoporous materials. The results presented here indicate that extremely rapid diffusion can also occur for mixtures of adsorbed molecules. The rapid diffusion of adsorbed molecules and the strong coupling between the fluxes of the adsorbed species in a mixture have interesting implications for uses of carbon nanotubes in membrane-based applications.  相似文献   

9.
The development of a solid-contact potentiometric sensor based on conducting rubbers using a carbon nanotubes ink is described here. Commercial rubbers are turned into conductive ones by a simple and versatile method, i.e. painting an aqueous dispersion of single-walled carbon nanotubes on the polymer surface. On this substrate, both the working ion-selective electrode and the reference electrode are built in order to form an integrated potentiometric cell. As a proof-of-principle, selective potassium electrodes are fully characterized giving comparable performances to conventional electrodes (sensitivity, selectivity, stability, linear range, limit of detection and reproducibility). As an application of the rubber-based electrodes, a bracelet was constructed to measure potassium levels in artificial sweat. Since rubbers are ubiquitous in our quotidian life, this approach offers great promise for the generation of chemical information through daily objects.  相似文献   

10.
Effects of carbon filler on the sorption and diffusion of carbon dioxide in natural rubber and in styrene-butadiene rubber have been studied. Sorption isotherms conform to Henry's law in unfilled rubber and to Langmuir's law in carbon black. The isotherms in filled rubber exhibit a combination of the two sorption modes. The Henry's law solubility parameter kD increases with carbon filler content; the Langmuir saturation constant CA initially is constant with filler level, but then decreases abruptly when carbon particles begin to aggregate. The diffusion coefficient decreases with increasing filler content, presumably owing to geometric effects and to polymer chain immobilization in the interfacial regions.  相似文献   

11.
The mutual effects of two crucial features of carbon nanotubes (CNTs) (surface and confinement) on the temperature-dependent water diffusion are studied through molecular dynamics simulations. A two-stage diffusion mechanism is detected in the CNTs of diameter smaller than 12.2 ?, which becomes obscure as the temperature increases. This peculiar phenomenon can be ascribed to the cooperation of the small confinement and the periodic surface. The diffusion coefficient of the confined water exhibits a nonmonotonic dependence on the confinement size and an unexpected increase inside the large CNTs (compared to that of bulk water). These anomalous behaviors can be attributed to the competition of the smooth surface and the small confinement. Considering the mutual effects, an empirical formula is proposed on the basis of two groups of numerical examples, whose results indicate that the confinement effect will dominate over the surface effect until the CNT diameter increases up to ~16 ?, whereas thereafter the surface effect becomes dominant and finally both of them vanish gradually.  相似文献   

12.
A simple method for achieving high dispersion and small platinum nanoparticles down to only 2 or 3 nm on structured carbon supports (carbon nanotubes-modified PAN-based carbon fiber and carbon nanotubes-modified graphite foil) is presented. Pulsed electrodeposition of Pt nanoparticles was performed at increased viscosity of the H2PtCl6 containing electrolyte by addition of glycerol. The catalyst nanoparticle size can be controlled by varying the amount of glycerol added into the aqueous H2PtCl6 solution, and adjusting the number of the potential pulses. The shape and size of the Pt nanoparticles was characterized by scanning electron microscopy and transmission electron microscopy. The electrocatalytic properties of Pt nanoparticles with respect to O2 and H2O reduction were investigated by means of cyclic voltammetry, and the improved catalytic activity of the Pt nanoparticles/carbon nanotubes surfaces could be proved.  相似文献   

13.
Features of the Stefan-Maxwell equation’s solution for equimolar three-component diffusion are considered. Component concentration distributions for modes with nonmonotonic distribution of gas medium density are obtained. The behavior of effective diffusion coefficients is analyzed.  相似文献   

14.
Metallic impurities within carbon nanotubes (CNTs) are considered as the main cause of their toxicity. Ultrasonication is a common procedure used to purify and obtain homogeneous dispersions of CNTs as well as to mix them with other components for further processing into composites. Herein, the influence of ultrasonication upon the bioavailability of metallic impurities in CNTs was investigated. We showed that even ultrasonication times as short as 5?min significantly enhanced the bioavailability of metallic impurities, which can therefore interact more actively with biologically important molecules. These findings will have profound impact on the processing of CNTs as well as on nanotoxicity studies.  相似文献   

15.
This paper reports a transparent and flexible glucose biosensor of which multi-wall carbon nanotubes (MWNTs) and glucose oxidase (GOx) is layer-by-layer (LBL) self-assembled on a polymer substrate. A thin Ti and Au layers is firstly deposited on the polymer substrate through plasma immersion ion implantation (PIII) and sputtering, respectively. An organic monolayer then forms on the gold surface using thiol chemistry. Subsequently, negatively charged MWNTs and GOx are stably LBL assembled on the modified Au surface, respectively, via alternative electrostatic interaction of the positively charged polyelectrolyte with the oppositely charged MWNTs and GOx. Electrochemical studies show that the multilayer membrane exhibits remarkable electrocatalytic activity to detect glucose molecule. The biosensor displays a linear response range of 0.02–2.2 mM (a correlation coefficient of 0.998) with a low detection limit of 10 μM. This remarkable performance, combined with the large area preparation process, demonstrates this CNT-based multilayer biosensor is well suited for commercial applications.  相似文献   

16.
We propose a model for a priori prediction of the solubility of gases in flexible polymers. The model is based on the concept of ideal solubility of gases in liquids. According to this concept, the mole fraction of gases in liquids is given by Raoult's law with the total pressure and the vapor pressure of the gas, where the latter may have to be extrapolated. However, instead of considering each polymer molecule as a rigid structure, we estimate the effective number of degrees of freedom from an equivalent freely jointed bead‐rod model for the flexible polymer. In this model, we associate the length of the rods with the molecular weight corresponding to a Kuhn step. The model provides a tool for crude estimation of the gas solubility on the basis of only the monomer unit of the polymer and properties of the gas. A comparison with the solubility data for several gases in poly(dimethylsiloxane) reveals agreement between the data and the model predictions within a factor of 7 and that better model results are achieved for temperatures below the critical temperature of the gas. The model predicts a decreasing solubility with increasing temperature (because of the increasing vapor pressure) and that smaller gas molecules exhibit a lower solubility than larger ones (e.g., CH4 has a smaller solubility than CO2), which agrees with the experimental data. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 701–706, 2003  相似文献   

17.
Sorption and diffusion of gases (CO2, N2, and He) in a polyimide (PI2080) film were measured by using an apparatus which gives the sorption rate curves from the initial state to the equilibrium state. Nonlinear isotherms observed for CO2 sorption were interpreted successfully in terms of the dual-mode model for sorption in glassy polymers. Linear isotherms observed for N2 and He seemed to obey Henry's law. Two diffusion coefficients (DI and DE) were obtained using the short-time method and the long-time method for a Fickian diffusion model, together with the equilibrium solubility (Ce) from each experiment. The initial sorption rate curves agreed with the calculated curves using DI, however near sorption equilibrium the curves are in accord with the calculated curves using DE. These observations suggest that some relaxation process is superimposed on the diffusion process. The non-Fickian transport data were correlated successfully with a model that combines time-dependent diffusion and the Fickian model.  相似文献   

18.
Carbon nanotube self-assembly into honeycomb-networks via controlling the ratio of the catalyst over hydrocarbon in the vapor phase using a tunable chemical vapor deposition process.  相似文献   

19.
Carbon nanotubes are composed of cylindrical graphite sheets. Both nanotubes and graphite sheets are benzenoid derivatives composed of sp2 carbon atoms arranged in a hexagonal pattern. Therefore both systems are aromatic. The extent of the aromatic character of a molecule G (here benzenoids) can be explained in terms of the number of possible Kekulé structures in G. In this work the Kekulé structures in carbon nanotubes and the corresponding, rectangular, graphite-sheets the tubes might originate from, were enumerated. It was shown that (2,2), (3,3), and (4,4) carbon nanotubes are more aromatic than the corresponding, rectangular, planar structures. This explains why it might be more difficult to saturate nanotubes by addition reactions than the respective, "narrow", graphite sheets.  相似文献   

20.
With large-scale production and application at large scale, carbon nanotubes (CNTs) may cause ad-verse response to the environment and human health. Thus, study on bio-effects and safety of CNTs has attracted great attention from scientists and governments worldwide. This report briefly summa-rizes the main results from the in vitro toxicity study of CNTs. The emphasis is placed on the descrip-tion of a variety of factors affecting CNTs cytotoxicity, including species of CNTs, impurities contained, lengths of CNTs, aspect ratios, chemical modification, and assaying methods of cytotoxicity. However, experimental information obtained thus far on CNTs' cytotoxicity is lacking in comparability, and some-times there is controversy about it. In order to assess more accurately the potential risks of CNTs to human health, we suggest that care should be taken for issues such as chemical modification and quantitative characterization of CNTs in cytotoxicity assessment. More importantly, studies on physical and chemical mechanisms of CNTs' cytotoxicity should be strengthened; assaying methods and evaluating criteria characterized by nanotoxicology should be gradually established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号