首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 89 毫秒
1.
通过溶胶-凝胶法制备了含二阶非线性光学发色团分散红19(DR19)的硅氧烷染料与聚酰亚胺有机-无机杂化材料.利用红外光谱、紫外-可见光谱、SEM、DSC和TGA等手段对其进行了表征.杂化极化后的序参数高达0.48,并具有优良的极化取向稳定性,423K下处理300h后,序参数仍能保持初始值的90%.杂化薄膜有较好的表面平整性,其断面呈网络结构.杂化材料的玻璃化转变温度(Tg)为561K,比纯聚酰亚胺的Tg(543K)高18K,表现出优良的高温热稳定性,其5%热失重温度为691K,10%热失重温度为758K.  相似文献   

2.
兼具非线性光学和热释电性能的有机-无机杂化薄膜   总被引:2,自引:0,他引:2  
用溶胶-凝胶法和原位加热极化聚合法制备了以4-[N,N-二-(二羟乙基)氨基苯基]-2,4-二-(4,4-二硝基苯基)咪唑(4HAPN)为生色团,以Ta(Ⅴ)的金属醇盐为无机前驱体的有机-无机杂化聚合物材料.用二次谐波产生技术和数字电荷积分法测得极化薄膜的二阶非线性光学系数d33为17.2pm/V,平均热释电系数为4.3×10-6C/(cm2·K).  相似文献   

3.
有机生色团/SiO_2-TiO_2二阶非线性光学杂化材料的研究   总被引:3,自引:0,他引:3  
以分散橙-3(DO-3)与γ-缩水甘油氧与基三甲氧基硅烷(KH-560)反应 得到的功能性生色团ASD为前体,采用溶胶-凝胶(sol-gel)法使ASD与钛酸四正 丁酯在酸性条件下共水解缩合,合成了新型稳定的有机生色团/SiO_2-TiO_2杂化溶 胶,并对该溶胶体系的相图进行了研究。利用傅立叶红外(FTIR)、透射电镜( TEM)和X射线能量色散谱仪(EDS)研究了杂化溶胶形成过程中的络合机理及溶胶 形态。由一维刚性取向气体模型计算杂化材料膜的二阶非线性光学(NLO)系数X~ (2) is 1.43 * 10~(-7) esu。差示扫描量热法(DSC)测得杂化材料的玻璃化温度 可达196 ℃;用紫外-可见光谱对杂化膜在极化前后的取向及取向稳定性进行了研 究。  相似文献   

4.
寻找理想的骨修复材料一直是骨科领域的研究热点之一。骨修复材料已由最初单纯取代天然骨组织的惰性材料向具有诱导骨组织再生功能的生物活性材料发展,其中有机-无机杂化材料由于有机和无机组分在分子/纳米水平的复合使其能够最大程度地实现二者的优势互补和协同优化,近年来受到广泛关注。本文着重介绍了有机-无机杂化骨修复材料近些年来的研究进展,并对其发展趋势进行了展望。  相似文献   

5.
阻变存储器具有功耗低、微缩性好、可大规模三维堆积、与互补金属氧化物半导体(CMOS)工艺兼容等诸多优势,可以满足高性能信息存储的关键要求。采用有机及杂化阻变材料作为存储介质构建器件,通过分子设计及合成策略不仅可实现器件的轻量化和柔性集成,还可以灵活地调控分子的电学特征以及器件的存储性能。本文全面综述了有机及杂化阻变材料与器件的最新进展,特别关注它们在电学性能调控和柔性存储性能方面的设计原则,并对有机及杂化阻变材料与柔性存储器件的当前挑战及未来发展前景进行了讨论。  相似文献   

6.
含钒无机有机杂化材料的结构复杂多样,在吸附、氧化还原、电化学、催化、光学、磁学以及多孔、手性材料研究等方面应用前景广阔,引起人们广泛关注。本文综述了含钒无机有机杂化材料研究的最新进展,介绍了合成含钒无机有机杂化材料的主要方法,按照有机组分与无机骨架作用的方式分类总结了含钒无机有机杂化材料的结构,介绍了其在离子交换、电化学、磁学、光学、催化等方面的应用,并展望了该类材料的研究前景和意义。  相似文献   

7.
传统的高折射率聚合物光学材料,可以通过向聚合物中引入一些芳香环,含硫基团以及除氟以外的其他卤素原子来提高聚合物光学材料的折射率,但是就目前的研究现状来看,这类纯聚合物光学材料的折射率一般都低于1.8.而将具有高折射率的无机纳米粒子引入到聚合物中,所制备的聚合物-无机纳米光学材料的折射率能够达到1.8以上.而且这类高折射率聚合物-无机纳米光学杂化材料同时具有高分子光学材料和无机材料的双重优点,具有广泛的应用前景.鉴于当前高折射率聚合物-无机纳米光学杂化材料发展之迅速和其研究与开发的重要性,并结合目前国内外的研究现状,本文就高折射率聚合物-无机纳米光学杂化材料的设计、制备方法及其相关应用做一个比较系统的介绍,同时对这类材料在未来研究中所应注意的问题也提出了相应的看法.  相似文献   

8.
有机-无机杂化分离膜研究进展   总被引:1,自引:0,他引:1  
有机-无机杂化膜材料结合了有机膜材料和无机膜材料的优良性能,已成为分离膜材料研究的一个热点。本文以有机、无机组分间相互作用类型对其进行分类,着重介绍组分间以化学键相结合的有机-无机杂化膜的优良特性,总结了影响此类杂化膜结构和性能的主要因素,概括了它在膜分离中的应用,提出了目前研究工作中存在的不足,并做出了简要的述评。  相似文献   

9.
有机-无机杂化材料兼具有机材料和无机材料的优点,是继单组份材料、复合材料和梯度材料之后的新一代功能材料。基于可以通过分子设计与剪裁的倍半硅氧烷(笼型倍半硅氧烷和无规倍半硅氧烷)无机前驱体,利用多种方法如反应性共混法、溶胶-凝胶法、光固化、原子转移自由基聚合、自组装技术等制备一系列高性能聚合物/倍半硅氧烷有机-无机纳米杂化材料。  相似文献   

10.
非共价键合聚酯/SiO2杂化材料的制备与性能   总被引:2,自引:0,他引:2  
非共价键合聚酯/SiO2杂化材料的制备与性能;聚己内酯;有机无机杂化;溶胶-凝胶;透明材料  相似文献   

11.
利用密度泛函理论(DFT)方法研究了[Mo6O19]2-修饰的单壁碳纳米管的非线性光学(NLO)性质. 结果表明, [Mo6O19]2-修饰的单壁碳纳米管作为特殊的有机-无机杂化体系, 具有显著的二阶非线性光学响应. 通过调整[Mo6O19]2-与纳米管之间的角度, 体系的稳定性显示出规律性的变化趋势, 且二阶NLO响应发生了变化. 对静场二阶极化率(βvec)有主要贡献的电子跃迁特征表明, [Mo6O19]2-与碳纳米管之间角度的改变影响了分子内的给受体特征. 当角度达到30°时, 化合物显示出最大的βvec值, 此时杂多阴离子簇为电子受体, 而碳纳米管为电子给体. 此外, 在碳纳米管的端位连接电子给体(如氨基)可有效地增大βvec值.  相似文献   

12.
IntroductionThe organic nonlinear optical(NLO) chromo-phores used for electro- optic(EO) polymers havereceived much attention of scientists due to theirfaster response time,wider applied wave bands,lower loss,easy remoulding and other novel prop-erties.A variety of organic chromophores havebeen extensively investigated for their nonlinearoptical properties,e.g.,thiophene containingπ-systems[1— 10 ] .Those systems in general exhibit en-hanced second- order polarizabilities but less ther-mal…  相似文献   

13.
Density flmctional theory(DFT)was employed to calculate the geometrical structures,UV-Vis absorption spectra and second-order nonlinear optical(NLO)properties of a family of iridium(Ⅲ)complexes,which possess of different cyclometallated ligands(C∧N)and ancillary ligands[pyridme-2-carboxylate(pic)].It was found that the mo-dification of the LUMO energy levels was achieved by changing pic ligands and the energy gaps between the HOMO and LUMO were notably increased or decreased.In addition,the degree of conjugation was significantly changed with the substituent groups varied,which led to that the first hyperpolarizabilityβcould be effectively modulated.Through the analysis of time-dependent DFT(TD-DFT)results,we predicted that these studied complexes withπ→π^*charge transfer was beneficial to the large second-order NLO properties.Therefore,we hope that these studied iridium(III)complexes can be considered as versatile second-order NLO materials.  相似文献   

14.
蔡静  曾薇  李权  骆开均  赵可清 《化学学报》2009,67(20):2301-2308
使用含时密度泛函理论(TDDFT)B3LYP方法计算了IB, IIB, VIIIB过渡金属与8-羟基喹啉络合(MQ)后, 配合物的电子光谱以及二阶非线性光学性质. 结果表明, 掺杂过渡金属后, 形成络合物的能隙值减小100~150 kJ/mol, 最大吸收波长红移150~200 nm左右. 电子从基态到激发态的跃迁主要为p→p*, n→p*跃迁, 属于LLCT, MLCT过程. IB的络合物MQ以及VIIIB的络合物MQ3表现出良好的非线性光学性质.  相似文献   

15.
AMI semi-empirical method was used to optimize the barbituric acid derivatives substituted with glucosyl B1-5 (series B), and the thiobarbituric acid derivatives substituted with glucosyl T1-5 (series T). Based on the optimized structures, INDO/CI method was adopted to calculate the electronic spectra. Meanwhile, the second-order nonlinear optical (NLO) coefficients βμ were calculated with the sum-over-state (SOS) formula. The results show that when the number of glucosyl units was increased, |βμ| values of the barbituric and thiobarbituric acid derivatives were both enhanced, especially for thiobarbituric acid derivatives. It indicates that non-conjugated substituted group could also improve NLO properties of materials when the number of repeated units was increased. Additionally, the absorption bands appearing in UV area are consistent with the proper change of the number of glucosyl units, and consequently it can be concluded that the high transparencies of all systems were scarcely varied.  相似文献   

16.
应用密度泛函理论(DFT)B3LYP/6-31G*方法计算研究了系列树型含有咪唑生色团的有机分子的结构和非线性光学性质.计算结果表明:该系列分子具有A- -D- -A(A:受体,D:给体)结构,分子基态的偶极矩、极化率、二阶NLO系数( )随共轭链的增长及吸电子基的增强而增大;同时,前线轨道能级差值越小此类分子的二阶极化率总有效值( )越大.计算的吸收光谱显示此系列树型分子在低能区域247.79nm-419.87nm都有一个最强吸收,并且均是最高占据轨道与最低空轨道之间的跃迁.  相似文献   

17.
采用密度泛函理论(DFT) B3LYP/6-31G*方法, 对系列十二顶点邻位双取代碳硼烷(C2B10H12)衍生物的几何构型进行优化. 在所得优化结构的基础上, 结合有限场方法(FF)和含时密度泛函理论(TD-DFT)对这些分子的二阶非线性光学(NLO)活性及电子吸收光谱进行了研究. 结果表明, 邻位双取代碳硼烷有较强的吸电子作用, 与有机基团形成D-π-A结构时, 可以起到很好的受体作用. 当给体部分或桥的共轭性好, 给体的给电子能力强时, 邻位双取代碳硼烷的吸电子作用更明显, 从而增强了分子的二阶NLO响应.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号