首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Gas chromatography in combination with electron capture negative ion mass spectrometry (GC/ECNI‐MS) is a sensitive method for the determination of polybrominated compounds in environmental and food samples via detection of the bromide ion isotopes m/z 79 and 81. The standard reagent gas for inducing chemical ionization in GC/ECNI‐MS is methane. However, the use of methane has some drawbacks as it promotes carbonization of the filament and ion source. In this study, we explored the suitability of nitrogen as reagent gas for the determination of brominated flame retardants (polybrominated diphenyl ethers (PBDEs), polybrominated biphenyls (PBBs), allyl‐2,4,6‐tribromophenyl ether (ATE) and 2,3‐dibromopropyl‐2,4,6‐tribromophenyl ether (DPTE)) and halogenated natural products (for instance, methoxylated tetrabrominated diphenylethers and polybrominated hexahydroxanthene derivatives). An ion source temperature of 250°C and a nitrogen pressure of 7 Torr in the ion source gave the highest response for m/z 79 and 81 of virtually all investigated polybrominated compounds. Using these conditions, nitrogen‐mediated GC/ECNI‐MS usually gave higher sensitivity than the method with methane previously used in our lab. In addition, the ion source was not contaminated to the same degree and the lifetime of the filament was significantly increased. Moreover, the response factors of the different polybrominated compounds with the exception of 2,4,6‐tribromophenol were more uniform than with methane. Nitrogen is available at very high purity at relatively low price. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
Polybrominated organic compounds are ubiquitous throughout the environment. This generic term comprises several classes of brominated flame retardants (e.g., polybrominated diphenyl ethers, polybrominated biphenyls, hexabromocyclododecane, dibromopropyltribromophenyl ether, 1,2-bis(2,4,6-tribromophenoxy)ethane) as well as a range of marine halogenated natural products (HNPs). Here we present gas chromatography retention times and elution orders (on DB-5) of 122 polybrominated compounds that may be found in food and environmental samples. Organobromine compounds in fish samples determined with gas chromatography interfaced to electron-capture negative ion mass spectrometry (GC/ECNI-MS) are discussed. The environmental relevance and important mass spectrometric features of the compounds are described as well. Our database aims to support the closer inspection and identification of peaks in gas chromatograms and to initiate dedicated screening for less frequently studied organobromines in samples.  相似文献   

3.
采用全二维气相色谱/飞行时间质谱(GC×GC-TOFMS),建立了鱼肉样品中含卤有机污染物的定性和定量分析方法.鱼肉样品用正己烷丙酮(1∶1,V/V)提取,凝胶色谱和复合硅胶柱净化,浓缩富集,全二维气相色谱联用飞行时间质谱(DB-5MS毛细管色谱柱联HT-8色谱柱)检测.软件自动识别后,经三步筛查,共鉴定出含氯或溴化合物72种,其中包括33种多氯联苯,9种有机氯农药,4种多溴联苯醚,4种DDT代谢产物,2种氯代茴香醚,2种氯苯乙烯,1种氯代茴香硫醚及1种甲基三氯生.另外,从质谱信息上看,有16种化合物明显含氯或含溴,但是因为缺少必要的谱库信息不能准确识别.采用外标定量法,对鱼肉样品中检出的主要的10种多氯联苯和1种多溴联苯醚进行了准确定量分析.  相似文献   

4.
This article reviews recent literature on the analysis of brominated flame retardants (BFRs) and brominated natural compounds (BNCs). The main literature sources are reviews from the last five years and research articles reporting new analytical developments published between 2003 and 2006. Sample pretreatment, extraction, clean-up and fractionation, injection techniques, chromatographic separation, detection methods, quality control and method validation are discussed. Only few new techniques, such as solid-phase microextraction (SPME) or pressurized liquid extraction (PLE), have been investigated for their ability of combining the extraction and clean-up steps. With respect to the separation of BFRs, the most important developments were the use of comprehensive two-dimensional gas chromatography for polybrominated diphenyl ethers (PBDEs) and the growing tendency for liquid-chromatographic techniques for hexabromocyclododecane (HBCD) stereoisomers and of tetrabromobisphenol-A (TBBP-A). At the detection stage, mass spectrometry (MS) has been developed as well-established and reliable technology in the identification and quantification of BFRs. A growing attention has been paid to quality assurance. Interlaboratory exercises directed towards BFRs have grown in popularity and have enabled laboratories to validate analytical methods and to guarantee the quality of their results. The analytical procedures used for the identification and characterization of several classes of BNCs, such as methoxylated polybrominated diphenyl ethers (MeO-PBDEs) (also metabolites of PBDEs), halogenated methyl or dimethyl bipyrroles (DBPs), are reviewed here for the first time. These compounds were generally identified during the routine analysis of BFRs and have received little attention until recently. For each topic, an overview is presented of its current status.  相似文献   

5.
Gas chromatography coupled to ion trap tandem mass spectrometry (GC–ITMS-MS) is proposed for the analysis of methoxylated polybrominated diphenyl ethers (MeO-PBDEs) in fish and shellfish. MS–MS operating parameters related to the isolation and fragmentation of the precursor ions were optimized to achieve maximum sensitivity and selectivity. This new method allows the determination of both MeO-PBDEs and PBDEs in a single run. Low limits of detection (0.4–2.5 pg injected) and high precision (RSD < 13%) were achieved. A sample treatment based on a selective pressurized liquid extraction (PLE) using Florisil as fat retainer was applied for the analysis of these compounds in fish samples. Method limits of quantification ranged from 0.11 to 0.95 ng g−1 lipid weight for MeO-PBDEs and between 0.18 and 0.50 ng g−1 lipid weight for PBDEs. In addition, good repeatability of the whole method was achieved (RSD < 15%). The suitability of the method was evaluated by analyzing a certified reference material (SRM 1945, whale blubber) with satisfactory results. The developed method was applied to the simultaneous analysis of MeO-PBDEs and PBDEs in fish and shellfish samples from the Mediterranean Sea.  相似文献   

6.
Twenty-six methoxylated polybrominated diphenyl ethers (MeO-PBDEs) were characterized by gas chromatography (GC) on four different GC columns with different lengths and polarities, as well as by mass spectrometry using three ionization techniques, electron ionization (EI), electron capture negative ionization (ECNI) and positive ion chemical ionization (PICI). MeO-PBDE congeners with similar retention times on a nonpolar GC column were separated when analyzed on a polar GC column. EI can be used to determine the position of the methoxy substituent (ortho, meta or para) relative to the diphenyl ether oxygen in the MeO-PBDEs. The PICI ionization technique is shown to be valuable to generate structural information of the MeO-PBDEs, i.e. the degree of bromination on both the methoxy-substituted ring and the entirely brominated phenyl ring can be obtained. This structure information can also be achieved for certain MeO-PBDEs with the methoxy group in ortho position to the diphenyl ether bond in ECNI mode. Like other brominated compounds ECNI is preferable when analyzing environmental samples for quantification of MeO-PBDEs because of the formation of bromide ions, which enables low detection limits.  相似文献   

7.
We successfully detected halogenated compounds from several kinds of environmental samples by using a comprehensive two-dimensional gas chromatograph coupled with a tandem mass spectrometer (GC×GC-MS/MS). For the global detection of organohalogens, fly ash sample extracts were directly measured without any cleanup process. The global and selective detection of halogenated compounds was achieved by neutral loss scans of chlorine, bromine and/or fluorine using an MS/MS. It was also possible to search for and identify compounds using two-dimensional mass chromatograms and mass profiles obtained from measurements of the same sample with a GC×GC-high resolution time-of-flight mass spectrometer (HRTofMS) under the same conditions as those used for the GC×GC-MS/MS. In this study, novel software tools were also developed to help find target (halogenated) compounds in the data provided by a GC×GC-HRTofMS. As a result, many dioxin and polychlorinated biphenyl congeners and many other halogenated compounds were found in fly ash extract and sediment samples. By extracting the desired information, which concerned organohalogens in this study, from huge quantities of data with the GC×GC-HRTofMS, we reveal the possibility of realizing the total global detection of compounds with one GC measurement of a sample without any pre-treatment.  相似文献   

8.
The separation of 38 toxic and predominant polychlorinated biphenyl (PCB) congeners, 11 persistent halogenated pesticides, 1 brominated biphenyl (BB), and 8 polybrominated diphenyl ethers (PBDEs) has been optimized using comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC x GC-TOFMS). A thermal desorption-programmable temperature vaporization (TD-PTV) step was used for the injection. Different column sets were investigated, and a 100% dimethylpolysiloxane (15 m x 0.25 mm i.d. x 0.25 microm film thickness) narrowbore capillary column coupled to a high temperature (8% phenyl)-polycarborane-siloxane (2 m x 0.10 mm i.d. x 0.10 microm film thickness) microbore column set was selected. Of the 58 compounds investigated, only one pair of PCBs was not resolved. All other analytes were either baseline separated into the chromatographic plane or were virtually separated using the deconvolution capability of the TOFMS.  相似文献   

9.
李健  王翼飞  周显青  施致雄 《分析化学》2016,(11):1742-1747
采用索氏提取、凝胶渗透色谱和固相萃取技术作为前处理方法,建立乳制品中6种新型溴系阻燃剂、8种多溴联苯醚、四溴双酚A和α、β、γ-六溴环十二烷异构体共18种溴系阻燃剂的同时提取与净化方法,并结合气相色谱-负化学源质谱法(GC-NCI/MS)和高效液相色谱-电喷雾电离-串联质谱法(HPLC-ESI-MS/MS)进行检测。奶样经冷冻干燥后以正己烷-丙酮(1:1, V/V)索氏提取,采用凝胶渗透色谱结合酸化硅胶柱净化,随后以LC-Si固相萃取柱分离气相和液相待测物。以GC-NCI/MS测定6种新型溴系阻燃剂和8种多溴联苯醚,以HPLC-MS/MS检测四溴双酚A和六溴环十二烷异构体,内标法定量。结果表明,以空白牛奶样品为加标基质,多数待测物平均回收率为80.1%~114.7%,方法具有良好的精密度(多数待测物相对标准偏差( RSD)在0.87%~14.9%)和灵敏度(检出限在0.2~119.2 pg/g之间),可满足乳制品中多种溴系阻燃剂同时提取、净化和检测需求。  相似文献   

10.
In the presented study, comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC?×?GC-TOFMS) was shown to be a powerful tool for the simultaneous determination of various groups of contaminants including 18 polychlorinated biphenyls (PCBs), seven polybrominated diphenyl ethers (PBDEs), and 16 polycyclic aromatic hydrocarbons (PAHs). Since different groups of analytes (traditionally analyzed separately) were included into one instrumental method, significant time savings were achieved. Following the development of an integrated sample preparation procedure for an effective and rapid isolation of several groups of contaminants from fish tissue, the GC?×?GC-TOFMS instrumental method was optimized to obtain the best chromatographic resolution and low quantification limits (LOQs) of all target analytes in a complex mixture. Using large-volume programmable temperature vaporization, the following LOQs were achieved-PCBs, 0.01-0.25 μg/kg; PBDEs, 0.025-5 μg/kg; PAHs 0.025-0.5 μg/kg. Furthermore, several capillary column combinations (BPX5, BPX50, and Rxi-17Sil-ms in the first dimension and BPX5, BPX50, Rt-LC35, and HT8 in the second dimension) were tested during the experiments, and the optimal separation of all target analytes even of critical groups of PAHs (group (a): benz[a]anthracene, cyclopenta[cd]pyrene and chrysene; group (b): benzo[b]fluoranthene, benzo[j]fluoranthene and benzo[k]fluoranthene; group (c): dibenz[ah]anthracene, indeno[1,2,3-cd]pyrene and benzo[ghi]perylene) was observed on BPX5?×?BPX50 column setup. Moreover, since the determination of target analytes was performed using TOFMS detector, further identification of other non-target compounds in real life samples was also feasible.  相似文献   

11.
Hu Y  Li J  Zhang Z  Zhang H  Luo L  Yao S 《Analytica chimica acta》2011,708(1-2):61-68
In this work, we developed a novel graphene-assisted matrix solid-phase dispersion (GA-MSPD) method for extraction of polybrominated diphenyl ethers (PBDEs) and their methoxylated (MeO-) and hydroxylated (OH-) analogs from environmental samples. We found that grinding the solid sample with chemically converted graphene (CCG) powder yielded a tight contact and sufficient dispersion of the sample matrix due to the large surface area and flexible nanosheet morphology of CCG. The resultant blend was eluted using a two-step elution strategy: PBDEs and MeO-PBDEs were eluted firstly by hexane/dichloromethane and analyzed by GC-ECD, and then OH-PBDEs were eluted by acetone and determined by LC-ESI-MS/MS. The GA-MSPD conditions were optimized in detail. Better recoveries were obtained with GA-MSPD than with other sorbents (C18 silica, Florisil and carbon nanotubes) and other extraction techniques (Soxhlet and accelerated solvent extraction). Other advantages of GA-MSPD, including reduced consumption of sorbent and solvent, good selectivity and short extraction time, were also demonstrated. In analysis of soil samples, the method detection limits of five PBDEs, ten MeO-PBDEs and ten OH-PBDEs were in the range of 5.9-28.7, 14.3-46.6, and 5.3-212.6 pg g(-1) dry weight, respectively. The proposed method was successfully applied to the extraction of PBDEs, MeO-PBDEs and OH-PBDEs from different kinds of spiked environmental samples, including soil, tree bark and fish.  相似文献   

12.
This review provides a summary of various analytical methodologies applied to the determination of “novel” brominated flame retardants (NBFRs) in various environmental compartments, as reported in peer reviewed literature, either in print or online, until the end of 2010. NBFRs are defined here as those brominated flame retardants (BFRs) which are either new to the market or newly/recently observed in the environment. The preparation and extraction of sediment, water, sewage sludge, soil, air and marine biota samples, the extract clean-up/fractionation and subsequent instrumental analysis of NBFRs are described and critically examined. Generally, while the instrumental analysis step mainly relies on mass-spectrometric detection specifically developed for NBFRs, and hyphenated to liquid or gas chromatography, preceding steps tend to replicate methodologies applied to the determination of traditional BFRs such as polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecane (HBCD). Shortcomings and gaps are discussed and recommendations for future development are given.  相似文献   

13.
Separations of 12 compound classes, polychlorinated biphenyls (PCBs), diphenyl ethers (PCDEs), naphthalenes (PCNs), dibenzothiophenes (PCDTs), dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs), terphenyls (PCTs) and alkanes (PCAs), toxaphene, organohalogenated pesticides (OCPs), and polybrominated biphenyls (PBBs) and diphenyl ethers (PBDEs) by comprehensive two-dimensional gas chromatography were evaluated. Five column combinations, DB-1 x 007-210, DB-1 x HT-8, DB-1 x LC-50, DB-1 x 007-65HT and DB-1 x VF-23ms were used to study, primarily, group-type separations, but attention was devoted also to within-class separation, especially for those classes which were not addressed in much detail before, the PCNs, OCPs, PBBs and PCTs. The DB-1 x 007-210 column set did not offer any extra separation compared to one-dimensional GC. For the DB-1 x HT-8 column combination, the useful principle of congener separation on the basis of number of halogen substituents in a molecule was confirmed (PCBs, toxaphene) and extended (PCTs, PBDEs). No practically useful group-type separation was observed for this column combination. The DB-1 x LC-50 set provides group separation based on planarity: planar compounds such as PCDDs, PCDFs, PCDTs and PCNs are much more retained than, and therefore separated from, non-planar analytes. Within the classes of PCBs, PBBs and PCTs highly useful separation of planar from non-planar compounds was also observed. The DB-1 x 007-65HT column set effectively separates PCAs and PBDEs from all other compound classes, and provides a good separation of brominated and chlorinated analogue classes from each other. This column set was the most efficient one for within-class separation of OCPs and PCNs. Finally, DB-1 x VF-23ms yields excellent within-class separations, especially of non-aromatic compounds, viz. OCPs, toxaphene and PCAs. No group separation was observed here. The applicability of the approach was demonstrated for a sediment extract and a dust extract. In the sediment extract, PCDDs, PCDFs, PCAs and PCNs were identified and their efficient separation was achieved. In the dust sample, separation of PCAs and PBDEs was achieved and several new PBDE congeners were identified.  相似文献   

14.
邵敏  陈永亨  李晓宇 《分析化学》2012,40(8):1139-1146
建立了人体血清中多种环境雌激素:多溴联苯醚、邻苯二甲酸酯和双酚A的快速可靠的连续在线分离及在气相色谱-质谱上的分析方法.血清样品经过浓盐酸使蛋白质变性,用乙醚萃取,经硅胶柱分离出多个族组分:多溴联苯醚(Polybrominated diphenyl ethers,PBDEs)、邻苯二甲酸酯(Phthalate estcrs,PAEs)和双酚A(Bisphenol A,BPA),最后由气相色谱-质谱的选择离子检测测定.PBDEs,PAEs和BPA标准曲线回归方程拟合度R2均大于0.99,表明在测试的浓度范围内线性关系良好.PBDEs目标化合物的检出限为0.005~0.048μg/L,PAEs目标化合物的检出限为0.103~0.833μg/L,BPA的检出限是0.035 μg/L.标准样品重复样中,PBDEs的RSD(relative standard deviation)值分别为2.8%~10.9%;PAEs的RSD值为5.6%~9.9%;BPA的RSD值为3.0%.实际血清样品中,PBDEs的加标回收物PCB209(Polychloride diphenyl ether 209)的回收率范围是74.8%~88.5%;PAEs中的加标回收物DBP-D4(Dibutyl phthalateDeutorium 4)的回收率范围为78.7%~97.0%;BPA中的加标回收物BPA-D16( Bisphenol A-Deutorium 16)的回收率范围是76.3%~93.1%.本方法检测血液中多种环境雌激素灵敏度高、重现性和回收率均良好.  相似文献   

15.
A methodology for the simultaneous analysis of eight polybrominated diphenyl ethers (PBDEs); eight methoxylated PBDEs (MeO-PBDEs); and three emerging flame retardants, hexabromobenzene (HBB), pentabromoethyl benzene (PBEB), and decabromodiphenyl ethane (DBDPE) by gas chromatography coupled to tandem mass spectrometry (GC-MS-MS) was developed for two environmental matrices (sediment and sludge) and three biological matrices (fish, dolphin blubber, and bird eggs). The use of selective reaction monitoring (SRM) allows a high selectivity, which is critical in the analysis of complex samples like blubber. Analytical parameters such as linearity, reproducibility, or accuracy were evaluated. Method limits of detection and quantification were evaluated and compared with GC-EI-MS and GC-NCI-MS. Method detection limits were valid for the environmental analysis in all cases, with values between 0.01 and 1.65 ng/g dw for sediment, 0.05 and 2.78 ng/g dw for sludge, 0.04 and 10.6 ng/g lw for fish, 0.01 and 1.11 ng/g lw for dolphin blubber, and 0.03 and 3.20 ng/g lw for bird eggs. The developed method was applied to five samples of each matrix. PBDEs were detected in all samples, while MeO-PBDEs were only detected in dolphin blubber. DBDPE was detected in sediment and sludge.  相似文献   

16.
Separations of eight persistent organohalogenated classes of pollutants, organochlorinated pesticides (OCPs), polychlorinated biphenyls (PCBs), polychlorinated diphenyl ethers (PBDEs), polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), polychlorinated naphthalenes (PCNs), polychlorinated terphenyls (PCTs) and toxaphene (CTT) by comprehensive two-dimensional gas chromatography (GC x GC) were evaluated. Columns with different polarity and selectivity, including ZB-5, HT-8, DB-17 and BP-10, were selected as first dimension and combined with columns of increasing polarity in the second dimension, i.e. HT-8, BPX-50 and Carbowax (or Supelcowax-10). In total nine column combinations were tested. Because the main interest of the study was fast screening of the test xenobiotic families in complex matrices, in all cases, attention was primarily focussed on group-type separation. Nevertheless, within-group separation was also considered, especially for those classes containing particularly toxic congeners, such as PCBs and PCDD/Fs. Although none of the assayed column sets allowed the simultaneous and complete separation of all pollutants classes, some column combinations provided satisfactory separations among selected families and the rest of pollutants investigated. That was, for instance, the case of HT-8 x BPX-50 for PBDEs and PCDD/Fs, DB-17 x HT-8 for PCNs and OCPs and BP-10 x BPX-50 for CTT, PCDD/Fs and PBDEs. The feasibility of the proposed approach for the fast screening of the target classes of pollutants in complex samples was illustrated by the analysis of food and marine fat samples prepared using simplified miniaturised sample treatment methods.  相似文献   

17.
全二维气相色谱(GC×GC)是20世纪90年代发展起来的具有高分辨率、高灵敏度、高峰容量等优势的分离技术,在我国将其用于大气挥发性有机物(VOCs)研究方面才刚刚起步.本文将GC-GC与氢火焰离子化检测器(FID)联用,构建了用于测量大气有机物的热脱附-全二维气相色谱-氢火焰离子化分析系统(TD-GC×GC-FID).采用HP-5MS和HP-INNOWAX色谱柱,建立了C5-C15大气有机物分析方法,实现了一次分析过程同时分离非甲烷烃(NMHCs)、含氧挥发性有机物(OVOCs)和卤代烃等多种组分.利用标准物质和四级杆质谱(qMS)进行定性,外标法结合FID质量校正因子定量.目标物在GC-GC谱图中第一和第二维保留时间变化分别小于0.6s和0.02s,峰体积平均相对标准偏差为14.3%,其中烷烃和芳香烃为4.5%.标准曲线r2均值大于0.99,平均检出限为6.04ng,平均回收率为111%.利用该方法检测到2010年1月北京市区大气中400多种有机物(信噪比大于50),鉴定了其中的103种物质,包括烷烃、烯烃、芳香烃、卤代烃、醛、酮、酯、醇和醚等.所测定有机物平均总浓度为51.3×10-9V/V,其中OVOCs约占51%,芳香烃约占30%,烷烃约占15%,卤代烃和烯烃分别占3%和1%.平均浓度最高的前3个组分是乙醇(9.84×10-9V/V)、丙酮(6.72×10-9V/V)和甲苯(3.48×10-9V/V).  相似文献   

18.
A new analytical method was established and validated for the analysis of 27 brominated flame retardants (BFRs), including so called “emerging” and “novel” BFRs (EBFRs and NBFRs) in fish samples. High performance liquid chromatography (HPLC) coupled to Orbitrap mass spectrometry (Orbitrap-MS) employing atmospheric pressure photoionization (APPI) interface operated in negative mode was used for the identification/quantitation of contaminants. HPLC-Orbitrap-MS analysis provided a fast separation of selected analytes within 14 min, thus demonstrating a high throughput processing of samples. The developed methodology was tested by intralaboratory validation in terms of recovery, repeatability, linear calibration ranges, instrumental and method limits of quantitation (i-LOQ and m-LOQ), and where possible, trueness was verified by analysis of certified reference materials (CRMs). Recoveries of analytes were between 80 and 119%, while the repeatability in terms of relative standard deviations (RSDs) was in the range from 1.2 to 15.5%. The measured values for both analyzed CRMs agreed with the provided consensus values, revealing the recovery of reference concentrations in 72–119% range. The elaborated method met the sensitivity criterion according to Commission Recommendation 2014/118/EU on monitoring of BFRs in food products for majority of the compounds. The concentrations of polybrominated diphenyl ethers (PBDEs) in real samples determined by HPLC-APPI-Orbitrap-MS method and validated gas chromatography–high-resolution mass spectrometry (GC–HRMS) method were found to be in a good agreement.  相似文献   

19.
An effective multiresidual method for the trace analysis of fifteen compounds from a diverse group of pesticides, polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyl (PCBs) and polybrominated biphenyl (PBBs) in aquaculture feed is described. The analytical procedure is based on the matrix solid-phase dispersion (MSPD) of feed sample and subsequent elution with hexane. The MSPD process was evaluated using an asymmetrical experimental design 2(3)3(2)//9. Factors such as C18 sorbent amount, kind of adsorbents, solvent volume and elution mode were considered. The results suggest that the operational MSPD conditions are elution with pressure, 1 g of C18, basic alumina as adsorbent and 30 mL of hexane. The overall method including MSPD procedure and GC coupled to mass spectrometry (MS/MS) has been applied to several samples of aquaculture feed and marine species. Precision and accuracy of the analytical method were determined using the reference material from the International Atomic Energy Agency (IAEA-406), showing a good agreement to the referenced values.  相似文献   

20.
Pyrolysis oils have attracted a lot of interest, as they are liquid energy carriers and general sources of chemicals. In this work, gas chromatography with flame ionization detector (GC-FID) and two-dimensional gas chromatography with time-of-flight mass spectrometry (GC×GC-TOFMS) techniques were used to provide both qualitative and quantitative results of the analysis of three different pyrolysis oils. The chromatographic methods and parameters were optimized and solvent choice and separation restrictions are discussed. Pyrolysis oil samples were diluted in suitable organic solvent and were analyzed by GC×GC-TOFMS. An average of 300 compounds were detected and identified in all three samples using the ChromaToF (Leco) software. The deconvoluted spectra were compared with the NIST software library for correct matching. Group type classification was performed by use of the ChromaToF software. The quantification of 11 selected compounds was performed by means of a multiple-point external calibration curve. Afterwards, the pyrolysis oils were extracted with water, and the aqueous phase was analyzed both by GC-FID and, after proper change of solvent, by GC×GC-TOFMS. As previously, the selected compounds were quantified by both techniques, by means of multiple point external calibration curves. The parameters of the calibration curves were calculated by weighted linear regression analysis. The limit of detection, limit of quantitation and linearity range for each standard compound with each method are presented. The potency of GC×GC-TOFMS for an efficient mapping of the pyrolysis oil is undisputable, and the possibility of using it for quantification as well has been demonstrated. On the other hand, the GC-FID analysis provides reliable results that allow for a rapid screening of the pyrolysis oil. To the best of our knowledge, very few papers have been reported with quantification attempts on pyrolysis oil samples using GC×GC-TOFMS most of which make use of the internal standard method. This work provides the ground for further analysis of pyrolysis oils of diverse sources for a rational design of both their production and utilization process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号