首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 67 毫秒
1.
In reversed-phase chromatography (RPC), the restricted retention of "bulky" solutes can occur in one of two ways, giving rise to either "shape selectivity" or "steric interaction." Starting with data for 150 solutes and 167 monomeric type-B alkylsilica columns, the present study examines the steric interaction process further and compares it with shape selectivity. The dependence of column hydrophobicity and steric interaction on column properties (ligand length and concentration, pore diameter, end-capping) was determined and compared. The role of the solute in steric interaction was found to be primarily a function of solute molecular length, with longer solutes giving increased steric interaction. We find that there are several distinct differences in the way shape selectivity and steric interaction are affected by separation conditions and the nature of the sample. Of particular interest, steric interaction exhibits a maximum effect for monomeric C(18) columns, and becomes less important for either a C(1) or C(30) column; shape selectivity appears unimportant for monomeric C(1)-C(18) columns at ambient and higher temperatures, but becomes pronounced for C(30) - as well as polymeric columns with ligands ≥C(8). One hypothesis is that shape selectivity involves the presence or creation of cavities within the stationary phase that can accommodate a retained solute (a primarily enthalpic process), while steric interaction mainly makes greater use of spaces that pre-exist the retention of the solute (a primarily entropic process). The related dependence of hydrophobic interaction on column properties was also examined.  相似文献   

2.
Some alkylsilica columns carry a positive charge at low pH, as determined by anion-exchange with nitrate ion. In the present study, the relative positive charge for 14 alkylsilica columns was measured for a mobile-phase pH 3.0. All but 3 of these columns were found to carry a significant positive charge under these conditions. The relative positive charge on these columns was found to correlate approximately with two other column characteristics: relative cation-exchange behavior as measured by the hydrophobic-subtraction model (values of C-2.8), and slow equilibration of the column to changes in the mobile-phase-as evidenced by a slow change in the retention of anionic and cationic solutes with time. The origin of this positive charge may arise from the bonding process, with incorporation of some cationic entity into the stationary phase.  相似文献   

3.
Retention measurements involving 16 test solutes have been carried out for 38 type-A alkyl-silica columns and three bonded-zirconia columns. These measurements have been analyzed in terms of a model previously developed for type-B columns, so as to yield values of five column selectivity parameters (H, S*, A, B, C) for each type-A column. Overall differences in selectivity between type-A and -B columns can be related to the average values of H, S*, etc. for each column type. Compared to type-B columns, type-A columns provide generally stronger retention for carboxylic acids, while solutes that are more hydrophobic or less bulky are more retained on type-B columns. Hydrogen-bond acceptors (e.g. aliphatic amides) and cations (e.g. protonated bases) are strongly retained on type-A versus type-B columns. Compared to type-B columns, bonded-zirconia columns show much increased retention of cations and reduced retention of hydrogen-bond acceptors. Because of relatively large differences in the selectivity of bonded-zirconia, type-A, and type-B columns, it will prove difficult to find columns of different type (e.g. a type-A and a type-B column) which have equivalent selectivity. Type-A columns also tend to be more different from each other (in terms of selectivity) than is the case for type-B columns. As a result, the replacement of a given type-A column by an "equivalent" type-A column also appears unlikely, except for samples that do not contain ionized compounds.  相似文献   

4.
In reversed-phase liquid chromatography, the retention mechanism of solute has been studied under linearly programmed gradient mobile-phase conditions. The separation of a mixture of four purine compounds (purine, theobromine, theophylline, and caffeine) was considered as a practical case in two binary mobile phase systems, water/methanol and water/acetonitrile. The retention model which describes how the retention factor is related to the mobile-phase composition has been developed in various mathematical forms to predict the retention time in both linear and gradient elutions. For a pulse injection of sample, two important factors, the retention time and the bandwidth of solute, might be computable to predict the elution profiles estimated by the distribution function, such as the Gaussian distribution function. In this work, a prediction method based on the analogue of the retention model was proposed to calculate the bandwidth in linear gradient elutions. Band broadening was caused by the different migration velocities of the front and rear ends of the solute band in a chromatographic column. Therefore, the migration behaviors of the front and rear ends of the solute band were explained with the same retention model which had been used to predict the retention time of solute. For the well retained solutes, theophylline and caffeine, the predicted bandwidth and experimentally obtained bandwidth showed good agreement in both isocratic and gradient elutions.  相似文献   

5.
The isocratic retention of 67 widely-different solutes in reversed-phase liquid chromatography (RP-LC) has been investigated as a function of temperature and mobile phase composition (% B) for three different C18 columns. Similar studies were also carried out in a gradient mode, where temperature, gradient time and solvent type were varied. These results show that changes in retention with these conditions are similar for each of these three columns. This suggests that relative column selectivity as defined by experiments for one set of experimental conditions will be approximately applicable for other conditions, with the exception of changes in mobile phase pH-which can affect values of the column parameter C (a measure of silanol ionization). Column selectivity as a function of pH was explored for several columns.  相似文献   

6.
7.
8.
Spray-dried, spherical synthetic hectorite particles have been thermally-treated at 500 degrees C for 16 h and used as adsorbent materials in reversed-phase liquid chromatography. The retention of a 22 mono and disubstituted aromatic compounds was evaluated to study the retention mechanisms on the clay mineral. The retention of solutes on the thermally-treated clays was markedly different than that measured on octadecylsilica (ODS) columns under identical conditions, but remarkably similar to retention characteristics of the same solutes on porous graphitic carbon columns. The clay columns exhibit an enhanced selectivity over the ODS column in separation of nitroaromatic positional isomers. Under identical mobile phase compositions, a selectivity, alpha, of 7.15 between ortho- and para-dinitrobenzene isomers was measured on the clay column compared to a alpha of 1.04 on the ODS column.  相似文献   

9.
Retention factors k have been measured for 67 neutral, acidic and basic solutes of highly diverse molecular structure (size, shape, polarity, hydrogen bonding, pKa, etc.) on 10 different C18 columns (other conditions constant). These data have been combined with k values from a previous study (86 solutes, five different C8 and C18 columns) to develop a six-term equation for the correlation of retention as a function of solute and column. Values of k can be correlated with an accuracy of +/- 1-2% (1 standard deviation). This suggests that all significant contributions to column selectivity have been identified (and can be measured) for individual alkyl-silica columns which do not have an embedded polar group. That is, columns of the latter kind can be quantitatively characterized in terms of selectivity for use in the separation of any sample.  相似文献   

10.
Monolithic silica columns with surface-bound octadecyl (C18) moieties have been prepared by a sol-gel process in 100 microm ID fused-silica capillaries for reversed-phase capillary electrochromatography of neutral and charged species. The reaction conditions for the preparation of the C18-silica monoliths were optimized for maximum surface coverage with octadecyl moieties in order to maximize retention and selectivity toward neutral and charged solutes with a sufficiently strong electroosmotic flow (> 2 mm/s) to yield rapid analysis time. Furthermore, the effect of the pore-tailoring process on the silica monoliths was performed over a wide range of treatment time with 0.010 M ammonium hydroxide solution in order to determine the optimum time and conditions that yield mesopores of narrow pore size distribution that result in high separation efficiency. Under optimum column fabrication conditions and optimum mobile phase composition and flow velocity, the average separation efficiency reached 160 000 plates/m, a value comparable to that obtained on columns packed with 3 microm C18-silica particles with the advantages of high permeability and virtually no bubble formation. The optimized monolithic C18-silica columns were evaluated for their retention properties toward neutral and charged analytes over a wide range of mobile phase compositions. A series of dimensionless retention parameters were evaluated and correlated to solute polarity and electromigration property. A dimensionless mobility modulus was introduced to describe charged solute migration and interaction behavior with the monolithic C18-silica in a counterflow regime during capillary electrochromatography (CEC )separations. The mobility moduli correlated well with the solute hydrophobic character and its charge-to-mass ratio.  相似文献   

11.
Abstract

The use of mixed packing of different selectivities for the separation of antidepressants and anticonvulsants was studied. The results show that columns packed with mixed ligand supports (C8 and cation exchange), gave the better resolution and peak shapes than the physically mixed C,8/cation exchange and serially connected columns. Also, the retention times obtained on the mixed ligands column, the physically mixed supports column and the two columns in series were different in each case.  相似文献   

12.
Previous work suggests that pi-pi interactions between certain solutes and both phenyl and cyano columns can contribute to sample retention and the selectivity of these two column types versus alkylsilica columns. Recent studies also suggest that dipole-dipole interactions are generally unimportant for retention on cyano columns. The present study presents data for 44 solutes, three columns and two different mobile phases that were selected to further test these conclusions. We find that pi-pi interactions can contribute to retention on both cyano and phenyl columns, while dipole-dipole interactions are likely to be significant for the retention of polar aliphatic solutes on cyano columns. When acetonitrile/water mobile phases are used, both pi-pi and dipole-dipole interactions are suppressed, compared to the use of methanol/water.  相似文献   

13.
14.
多维高效液相色谱分离模式组合   总被引:5,自引:0,他引:5  
刘照胜  李永民  蒋生祥  陈立仁 《色谱》1997,15(6):490-493
简述了多维高效液相色谱法的特点及发展简况,重点对分子排阻色谱/反相色谱、离子交换色谱/反相色谱、正相色谱/反相色谱、分子排阻色谱/离子交换色谱、液固色谱/反相色谱、亲合色谱/反相色谱、非手性柱/手性柱等的联用模式及实际应用进行了概括和总结。  相似文献   

15.
A systematic investigation was undertaken into the relative separation performance of five reversed-phase chromatography columns including some commercially new hybrid packed columns for a series of polycarboxylic acids and polyphenol compounds. Information theory (IT) and factor analysis (FA), together with a basic evaluation of retention information (band shape, retention factor and elution order) were used to compare four columns to a conventional C18 column. The results revealed very little difference in retention behaviour between the Phenomenex Aqua C18 column, the Waters XTerra RP C18 column, and the conventional Phenomenex Luna C18 column. However, there were notable differences in the retention processes between the Phenomenex Synergi polar-RP column, which is an ether-linked phenyl base with polar endcapping, and the Luna C18 column. The most significant differences were observed between the Luna C18 column and a Phenomenex Luna Cyano column. However, the limited degree of retention of the polycarboxylic acids and polyphenol compounds on the Luna Cyano column permits only limited use for the separation of these types of compounds. Overall, the Phenomenex Synergi polar-RP column exhibited the best performance for the separation of the test solutes compared to that of the conventional C18 column, with IT yielding an Informational Similarity of 0.99 and FA a moderate correlation coefficient of 0.70. The Phenomenex Synergi polar-RP column gave the best peak shape and offered substantial selectivity differences thereby providing a good alternative over the conventional C18 column for separating polycarboxylic acids and polyphenols.  相似文献   

16.
Most commercially available instruments for capillary electrochromatography (CEC) have a fixed configuration and lack the flexibility to use shorter columns. Applying a blended stationary phase (a phase consisting of a given ratio of bare silica and reversed phase material) can simulate columns of different length in CEC. The goal of this work was to examine the effect of the degree of blending of reversed-phase columns (with bare silica) on the speed of the separation of neutral compounds in CEC. Optimum column packing mixture was determined from the variation of the solute retention factors as a function of the ratios of blending of reversed-phase and bare silica. By adjusting the column composition, solute retention factors and the analysis run time were halved when compared to a pure reversed-phase column of the same length. Stationary phase blending can be considered as an additional parameter to mobile phase variation, column temperature and applied electric field for the optimization of selectivity and analysis time. By adjusting the stationary phase composition, mobile phase composition, column temperature and applied electric field, the analysis run time of neutral components was decreased more than 75% when compared to a separation obtained on neat reversed-phase column of the same dimensions. The linear dependence of the retention factors as a function of the blend ratio (reversed phase/bare silica) offers a framework for designing a “blended” packed capillary column for CEC separations.  相似文献   

17.
Electrostatic ion chromatography, also known as zwitterionic ion chromatography, has been predominantly used for the analysis of anions. Consequently, separation mechanisms proposed for this technique have been based on anion retention data obtained using a sulfobetaine-type surfactant-coated column. A comprehensive cation retention data set has been obtained on a C18 column coated with the zwitterionic surfactant N-tetradecylphosphocholine (which has the negatively and positively charged functional groups reversed in comparison to the sulfobetaine surfactants), with mobile phases being varied systematically in the concentration and species of both the mobile-phase anion and cation. A retention mechanism based on both an ion exclusion effect and a direct (chaotropic) interaction with the inner negative charge on the zwitterion is proposed for the retention of cations. Despite the relatively low chaotropic nature of cations compared with anions, the retention data shows that cations are retained in this system predominantly due to a chaotropic interaction with the inner charge, analogous to anions in a system where the C18 column is coated with a sulfobetaine-type surfactant. The retention of an analyte cation, and the effect of the mobile-phase anion and cation, can be predicted by the relative positions of these species on the Hofmeister (chaotropic) series.  相似文献   

18.
Allen D  El Rassi Z 《The Analyst》2003,128(10):1249-1256
Three different synthetic routes have been introduced and evaluated for the preparation of amphiphilic silica-based monoliths possessing surface-bound octadecyl ligands and positively charged groups. The amphiphilic silica monoliths (designated as cationic C18-monoliths) have been designed for use in reversed-phase capillary electrochromatography (RP-CEC) with hydro-organic mobile phases. These amphiphilic stationary phases yielded anodic electroosmotic flow (EOF) over a wide range of mobile phase pH. The magnitude of EOF remained constant up to pH 4.0 and then decreased at pH > 4.0 due to the ionization of silanol groups and the subsequent decrease in the net positive surface charge density of the amphiphilic monoliths. The cationic C18-monoliths exhibited reversed-phase chromatography (RPC) behavior toward non-polar solutes (e.g., alkyl benzenes), which parallels that observed with octadecyl-silica (ODS) monoliths. On the other hand, the amphiphilic stationary phases exhibited both non-polar and polar interactions toward slightly polar solutes such as anilines and PTH-amino acids. CEC retention factor k* and velocity factor k*e, which reflects the contribution of the electrophoretic mobility, were evaluated for charged solutes such as anilines and proteins.  相似文献   

19.
Improved and simplified reversed-phase liquid chromatographic conditions for the separation and simultaneous profiling of both steroidal glycoalkaloids and their aglycones, having solanidane- or spirosolane-type structures, are described. The most reproducible retention behavior for these ionizable compounds on C18 columns was achieved under isocratic and gradient elution conditions using acetonitrile in combination with triethylammonium phosphate buffer at pH 3.0, when basic functional groups of solutes and silanol groups on the silica are fully protonated minimizing ionic interactions. Gradient elution was the only feasible approach for the simultaneous separation of steroidal glycoalkaloids and their aglycones. A Zorbax SB C18 column, specially designed for low-pH separations, showed good performance in critical separations. The impurities of the commercial tomatine and tomatidine standards were studied and confirmed using mass spectrometric, liquid chromatographic and thin-layer chromatographic methods.  相似文献   

20.
Abstract

The retention of organic analyte cations on a low-capacity cation exchange column using indirect UV detection was studied. It was found that a combination of cation exchange/reversed-phase interactions affected the retention of organic analyte cations provided the analytes have both a cationic charge site and a hydrophobic center. The factors that influenced the organic analyte cation retention were: concentration of organic modifier, concentration of UV absorbing analyte, pH, and mobile phase ionic strength. Elution orders for several of the organic analytes studied on the low-capacity cation exchange column were different than those observed on silica-based strong cation exchange columns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号