首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
便携式电子设备的逐渐普及促使储能器件朝着柔性化、高储能方向发展。锂硫电池因拥有高比容量、能量密度高、低成本、环境友好等优势,被认为是极具潜力的下一代商用化二次电池,然而,其实用化仍受中间产物多硫化物的"穿梭效应"、正极活性物质硫的体积膨胀和低导电性等因素的限制,具有高导电性的碳纳米材料常被用于与硫复合来解决以上问题。本文针对采用碳纳米纤维、碳纳米管、石墨烯作为基体,重点介绍了硫与以上碳纳米材料的复合和相应的硫-纳米碳复合柔性正极材料的设计制备,探讨了提高正极硫含量和利用率的策略,分析了正极材料结构性质与电池电化学性能之间联系,最后对硫-纳米碳复合柔性正极材料的发展前景和面临的挑战进行了展望。  相似文献   

2.
采用Hummers法和熔融扩散法结合的方法制备了氧化石墨烯@硫(GO@S)复合正极材料,研究了此复合正极对锂硫电池电化学性能的影响.测试结果表明,GO@S复合正极大幅度提高了电池的比容量、有效改善了电池的倍率性能和循环稳定性.在0.1 C倍率下,初始放电容量高达1 044 mA·h/g;0.5 C倍率下经过100次的充放电循环后,库伦效率为96%,容量保持率为78.5%.  相似文献   

3.
<正>具有高理论能量密度、低成本和环境友好等优点的锂硫(Li-S)电池被视为极具开发潜力的下一代二次电池系统~([1]).近年来,利用碳/硫复合物作为电池正极材料显著提升了Li-S电池的容量和循环寿命.为进一步推动Li-S电池的实用化,研究者们致力于设计高硫负载正极以提升Li-S电池的能量密度~([2]).但现有的高硫负载正极仍面临着两个亟待解决的问题:1)倍率和  相似文献   

4.
采用热催化化学气相沉积法,在催化剂前驱体预处理的碳纸碳纤维上沉积碳纳米管。沉积的碳纳米管为多壁碳纳米管,石墨化程度高、分布密度高、比表面积大、管径均匀,微观形貌为松针状。以所制备的CNTs/CF复合材料作为三维多孔电子导体制成锂硫电池,S/CNTs/CF电池首次放电比容量达到1 213.6mAh/g,硫的利用率为72.45%,循环55次后比容量保持在798.4mAh/g,比活性炭电池的电化学性能有显著提高,表明S/CNTs/CF复合材料可以有效地提升锂硫电池的循环性能。  相似文献   

5.
文章以蔗糖为碳源,纳米碳酸钙为模板在800℃和950℃下碳化生成多孔碳,并分别与单质硫复合成锂硫电池正极材料。用SA3100测试多孔碳在77K的氮气吸脱附等温曲线,分别用Brunauer-Emmett-Teller(BET)理论和Barrett-Joyner-Halenda(BJH)模型计算多孔碳比表面积和孔径分布。采用场发射扫描电子显微镜(field emission scanning electron microscopy,FESEM)观察2种硫碳复合材料的形貌,能谱仪(energy dispersive spectrometer,EDS)观察硫和碳元素分布,X射线衍射仪(X-Ray diffraction,XRD)检测单质硫与碳材料的结构。测试了电池的交流阻抗谱和恒流充放电性能。结果表明:经950℃碳化的多孔碳与硫组成的复合材料在0.2C的放电倍率下首次放电比容为1 327mA·h/g,100次循环后,仍保持在630mA·h/g,库仑效率接近100%。  相似文献   

6.
文章采用不同质量比的葡萄糖和碳酸钙模板制备了3种多孔碳,再与单质硫复合成3种硫碳正极材料;测试计算了3种多孔碳的比表面积和孔径分布,观测分析了硫碳复合材料的形貌结构,测试了电池的电化学性能。研究结果表明:当葡萄糖与碳酸钙的质量比为4∶4时,制备的多孔碳与硫复合后装配的电池电化学性能最优;在0.2C的放电倍率下锂硫电池首次放电容量为1 480 mA·h/g,100次循环后仍能保持在630mA·h/g,库伦效率接近100%。  相似文献   

7.
利用化学刻蚀后得到的MXene (MX)片层具有大量阴离子官能团的特点,采用喷雾干燥技术,设计并合成了钒离子改性MXene(MX-VN)材料用于锂硫电池正极。MXene的优异导电性可以提高硫正极整体的导电性,同时原位构建的MX-VN界面可以提高对多硫化物的吸附效果和催化能力,提高硫的利用率。实验结果表明,采用MX-VN/S为正极的锂硫电池在0.1 C下的放电容量高达1438 mAh/g,且在0.5 C下循环200次以后容量保持率高达77.5%,电池性能明显提升。  相似文献   

8.
文章采用硬模板法制备了介孔碳,与单质硫混合制备了锂硫电池正极材料,采用BET、XRD、FESEM等测试手段对材料的性能进行表征,并研究了以介孔碳、导电石墨和碳纳米管为导电基体的锂硫电池的电化学性能。结果表明,硫/介孔碳复合材料为正极的电池在0.1C的放电倍率下首次放电比容量为1 389mA·h/g,0.2C倍率下首次放电比容为1 313mA·h/g,100次循环后,库仑效率保持在95%以上,其电化学性能在3种复合材料中最优。  相似文献   

9.
采用优化合成的高比表面积和多微孔结构的活性炭,通过加热的方法使单质硫升华并沉积到活性炭微孔中,得到锂硫电池正极用硫碳复合材料.通过X射线衍射、扫描电子显微镜和比表面积表征复合材料的结构、表面形貌和比表面特性.循环伏安测试表明,复合材料在2.05V和2.35V时存在两个还原峰,在2.4V时存在一个氧化峰.充放电循环实验表明,单质硫在100mA·g-1的电流密度下首次放电比容量高达1352.5mA·h·g-1,硫的利用率达到了80.9%,循环40周后比容量还保持在800.7mA·h·g-1,表现出良好的循环稳定性.  相似文献   

10.
以咖啡渣为原料, 利用碳化与活化反应制备出多孔的碳材料, 并利用X射线衍射、 扫描电子显微镜、 Raman光谱和N2吸附脱附等方法分析该材料的物理化学性质. 结果表明: 该材料具有较高的石墨化程度; 当质量电流密度为0.1 A/g时, 其首圈放电和充电质量比容量值分别为1 029 mA·h/g和461 mA·h/, 且循环稳定性较好, 其质量比容量远高于石墨的理论容量(372 mA·h/g).  相似文献   

11.
以玉米芯废渣为原料、KOH为活化剂,采用化学活化法制备多孔碳材料用于液体危化品苯的吸附.通过热重分析仪、X射线衍射仪(XRD)、扫描电子显微镜(SEM)分析多孔碳的微观结构和表观形貌.研究表明:在碳化温度350,℃、碳化保温时间30,min、m(KOH)∶m(C)=4∶1、活化保温时间120,min的条件下,最佳活化温度为900,℃,KOH的造孔效果最好,制备的多孔碳产品以微孔为主,比表面积达到2,387,m2/g,对苯的饱和吸附量最大为14,235,mg/g.  相似文献   

12.
碳基负极材料比容量低,无法满足高能量密度电池的需求.为了进一步寻找高容量长循环寿命的电池负极材料,采用水热反应法制备了自支撑CoMoO4负极,通过X射线衍射(XRD)和扫描电子显微镜(SEM)对材料的结构、形貌进行表征,利用循环伏安法和恒电流充/放电等技术对比研究了材料在锂/钠离子电池中的电化学性能.结果表明,CoMoO4负极在锂离子电池中的首次可逆比容量为1 403.6 mAh/g,首次库伦效率为146.5%,在100 mA/g电流密度下经50次循环后仍然高达793.6 mAh/g;而CoMoO4负极在钠离子电池中首次可逆比容量仅为314.2 mAh/g,但经50次循环后容量保持率仍有76.4 %.该自支撑负极无需导电剂和粘结剂,电极材料与泡沫镍结合力强,具有优异的循环稳定性.  相似文献   

13.
采用溶剂热法制备多壁碳纳米管(MWCNT)包覆沸石咪唑酯骨架(ZIF-8)而合成的MWCNT@ZIF-8复合材料,通过高温碳化此样品制备MWCNT包覆介孔碳(MWCNT@Meso-C)复合材料,再通过热熔融载硫(S),制得MWCNT@Meso-C/S复合材料。采用X线衍射分析(XRD)、拉曼光谱分析、比表面及孔容分析、热质量分析(TGA)、场发射扫描电子显微镜(FESEM)、能谱仪(EDS)以及电化学测试等手段对不同样品进行表征分析并测试其电化学性能。结果表明:在0.5C倍率下MWCNT@Meso-C/S半电池首次放电比容量为1 114 m A·h/g,100次循环后还有630 m A·h/g,库仑效率保持在99%以上。表明MWCNT@Meso-C/S复合材料有较高的活性物质利用率和良好的循环稳定性。  相似文献   

14.
开发了一种简单、经济、环保、利用生物质快速生产具有优良电化学性能的碳材料的方法。利用梧桐树叶作为生物质原料制备多孔碳材料,对其结构、形貌和电化学性能进行分析和测试。结果表明:以梧桐叶为原料,碱碳比为3,活化温度为800℃,活化时间为2 h时,制备的多孔碳材料具有大的BET比表面积,其值为2 178 m2/g,孔径分布为2.5 nm,比电容达到304 F/g。当电流密度由0.25 A/g增加至20 A/g时,样品的容量保持率为82.6%。以树叶为原料制备的多孔碳材料展示出高电容和优异的倍率特性,有望在超级电容器等领域得到重要应用。  相似文献   

15.
单质硫具有高理论比容量、丰富的储量、低成本和环境友好的特点,由硫正极和金属锂负极组成的锂硫电池能量密度可以达到1 000 Wh/kg以上.然而,硫的绝缘性、穿梭效应和充放电过程中的体积剧变等限制了锂硫电池的应用.要同时解决这3个问题,合理的硫载体材料设计是关键.结合近年来的相关文献报道,综述锂硫电池硫载体材料及其相应的电化学性能,展望硫载体材料的发展趋势.  相似文献   

16.
锂离子电池在机械应力等作用下往往会产生一系列的安全事故。为此,研究了扣式锂离子电池在不同应力下的力学、热学、电化学特性。通过对其进行平面和局部压缩实验并采集实验过程中的实时温度和电压,研究了不同应力下电池的容量、库伦效率和循环寿命的变化情况;通过结合力-变形响应、电压和温度的关系分析了电池在不同应力下的电化学衰减。结果表明:两种压缩下的电池容量均有不同程度的降低,压缩越大,降低的程度也越大,对电池内部结构的损坏也越大;而且局部压缩会产生更显著的影响。相同压缩率下,局部压缩后电池的带载能力明显要弱;并且局部压缩下电池的初始放电比容量也更低。为研发电化学性能和安全性能兼备的锂离子电池提供了一定的参考。  相似文献   

17.
锂硫电池因其高比容量、高能量密度和低成本等特点已被视为超越锂离子电池的下一代可充电电池。由于反应产物可溶性多硫化物的穿梭效应和循环中硫电极的体积膨胀导致电池的循环寿命较差。为了解决锂硫电池中存在的问题,研究人员开发了多种纳米结构的金属材料。总结了利用钛元素和钛基化合物(包括钛基氧化物、钛基硫化物和钛基氮化物)与硫的反应形成牢固化学键,通过金属基复合材料的结构设计来提升锂硫电池的综合性能。  相似文献   

18.
作为储能器件的重要一员,锂硫电池具有理论能量密度高、安全性好、成本低等优点,已成为目前最具前景的电源体系之一.但锂硫电池充放电过程中多硫化物的穿梭效应使其在长期循环过程中的性能衰减. MXene基材料具有优异的导电性和高比表面积,对多硫化锂具有强化学吸附和催化转化能力,能够有效避免多硫化物的穿梭效应,从而提高锂硫电池的循环稳定性和倍率性能.本工作简述了MXene基材料在锂硫电池中的应用优势,总结了MXene基复合材料在锂硫电池正极和隔膜中的应用研究现状,归纳了MXene基材料对锂硫电池穿梭效应的影响,最后,展望了MXene基材料在锂硫电池领域的未来研究方向.  相似文献   

19.
锂硫(Li-S)电池因高理论能量密度在众多新型电池中受到广泛关注,但存在硫正极导电性差、多硫化物的穿梭等问题,制约其商业应用。针对上述问题,本次试验制备苘麻基生物碳(AC),通过熔融扩散法与升华硫(S)复合形成碳/硫复合材料(AC@S),并使用碳涂层法在正极材料表面涂覆多壁碳纳米管(MWCNTS)作为Li-S电池正极片与隔膜之间的夹层,进一步抑制多硫化物的溶解和扩散,阻止穿梭效应,减小活性物质的损失,提高Li-S电池的容量和循环性能。AC@S+MWCNTs电池首次放电容量为1 242.8 mAh·g-1,循环150次后仍保持982.4 mAh·g-1,相同条件下比AC@S高出275.0 mAh·g-1。将MWCNTS涂层与正极材料结合设计工艺简单,成本低,且可提高材料导电性、抑制多硫化物的穿梭效应,表现出良好的循环性能和库伦效率,是一种解决Li-S电池穿梭效应的有效途径。  相似文献   

20.
三嗪基有机多孔材料(CTFs)材料一般都是采用离子热法或微波法合成,但是这两种方法都有它们的缺点,如反应条件苛刻,单体数量有限,且难以实现等,限制了其实际应用.基于此情况,开发了一种模块搭建的设计思路,在不使用模板剂的情况下,合成孔径可调的CTFs材料.首先,以2,4,6-三(4-溴苯基)-1,3,5-三嗪-2,4,6-三胺(TPTT)为中心,合成了系列富氮多孔有机聚合物(NT-POP-1-6);然后,在800℃温度下进行后续热处理,获得系列孔径可调的三嗪基有机多孔聚合物(NT-POP@800-1-6).NT-POP@800-1-6的BET表面积范围为475~736 m~2·g~(-1).该系列材料具有永久的孔隙度,其有机框架结构上含有大量可以成为有效吸附位点的氮原子.NT-POP@800-1-6在碘蒸气中表现出优异的快速吸附性能,4 h的吸附量可以达到56%~192%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号