首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
考虑基于传统液压制动的横摆稳定性控制(YSC)应用于全电独立驱动-制动电动车受到的限制和电子机械制动(EMB)应用于电动车的优势,提出了基于全电耦合制动和遗传PID算法的YSC控制方案,基于Matlab/Simulink搭建了仿真平台,通过阶跃路转向工况进行了验证。仿真结果表明:无YSC控制时,整车会因横摆角速度过大而失稳;有YSC控制时,整车横摆角速度被控制在目标值附近,整车未失稳。在控制过程中,EMB工作时间减少3.93s,占总工作时间的88.9%;最大制动力矩需求可减小495N·m,占总制动力矩的67.6%,这为优化EMB提供了途径。另外,在控制过程中,除了减小了EMB能耗外,后左和后右轮毂电机系统可回收能量31.25kJ,节能效果显著。相关研究可为优化EMB制动和进一步减少电动车整车能耗提供新思路。  相似文献   

2.
考虑基于传统液压制动的横摆稳定性控制(YSC)应用于全电独立驱动-制动电动车受到的限制和电子机械制动(EMB)应用于电动车的优势,提出了基于全电耦合制动和遗传PID算法的YSC控制方案,基于Matlab/Simulink搭建了仿真平台,通过阶跃路转向工况进行了验证。仿真结果表明:无YSC控制时,整车会因横摆角速度过大而失稳;有YSC控制时,整车横摆角速度被控制在目标值附近,整车未失稳。在控制过程中,EMB工作时间减少3.93s,占总工作时间的88.9%;最大制动力矩需求可减小495N·m,占总制动力矩的67.6%,这为优化EMB提供了途径。另外,在控制过程中,除了减小了EMB能耗外,后左和后右轮毂电机系统可回收能量31.25kJ,节能效果显著。相关研究可为优化EMB制动和进一步减少电动车整车能耗提供新思路。  相似文献   

3.
为了避免车辆发生横向失稳的风险,根据四轮独立驱动电动汽车四轮驱动/制动力矩独立可控的特点,提出了一种具有上层控制器和下层控制器两层结构的模糊滑模直接横摆力矩控制策略。上层控制器采用模糊滑模控制器计算车辆总的需求横摆力矩,并对4个车轮纵向力进行分配。下层控制器将轮胎纵向力转化为对轮胎滑动率的控制,并通过控制4个车轮的力矩使轮胎纵向力得到实现。仿真结果表明,该模糊滑模直接横摆力矩控制策略在不同的附着路面条件下都能保证车辆的横向稳定性,并能削弱传统滑模控制器造成的系统抖振。  相似文献   

4.
针对装有线控机械制动系统的车辆的制动稳定性控制问题,在MATLAB/Simulink中建立七自由度车辆动力学模型及线控机械制动系统模型,提出一种兼顾制动效能与横摆稳定性协调控制的车辆制动力分配策略;该策略采用分层控制结构,运用滑模控制和模糊控制理论设计顶层控制器,主要负责纵向目标制动力及横向目标横摆力矩的求取;底层控制器运用二次规划方法,以轮胎利用率为目标优化函数,使用有效集算法求解目标函数,在车辆制动时完成目标纵向力与横摆力矩协调分配,进而达到横、纵向协调最优控制的目的;运用MATLAB/Simulink与Carsim在对开路面上进行改变制动意图的工况联合仿真。结果表明,所提出的车辆制动力分配策略能够在保证车辆制动效能的前提下同时满足车辆横摆稳定性控制要求。  相似文献   

5.
针对四轮独立驱动电动汽车转向稳定性的横摆力矩控制问题,建立了七自由度整车模型和Dugoff轮胎模型.基于滑模控制理论,选择质心侧偏角和横摆角速度两者为联合控制变量,并以汽车车速和路面附着系数为输入,运用模糊控制理论确定联合控制变量的联合控制参数,设计了四轮独立驱动电动汽车转向稳定性的横摆力矩控制策略.在Matlab/Simulink环境下选取不同车速、不同路面附着系数进行了连续转向行驶和突然转向行驶的仿真分析.结果表明,所设计的控制策略能够将质心侧偏角和横摆角速度控制在稳定范围内,使车辆在任意转向行驶工况下保持稳定,最大限度地提高轮毂电动汽车的转向稳定性.  相似文献   

6.
车辆横摆稳定性的模糊控制   总被引:4,自引:0,他引:4  
提出了一个模糊逻辑控制方法来提高车辆的横摆稳定性.差动制动产生适当的横摆力矩使车辆横摆角速度和质心侧偏角跟踪其期望值,同时利用3自由度模型对质心侧偏角进行了估计.采用7自由度非线性车辆模型在不同转向操纵条件下进行了仿真.仿真结果验证了所设计的模糊控制器的有效性.  相似文献   

7.
针对重型汽车研究了横摆稳定性差动制动模糊控制方法,以横摆角速度和质心侧偏角为控制目标,利用差动制动产生适当的横摆力矩,提高车辆的横摆稳定性。根据具体车型建立了重型汽车的虚拟样机整车模型,并利用Matlab/Simulink搭建了差动制动模糊控制系统,通过ADAMS-Matlab联合仿真分析了不同车速、制动减速度、路面附着系数和转弯半径下的车辆响应。结果显示,应用差动制动模糊控制方法,在各种工况下均能使车辆的横摆角速度、质心侧偏角和侧向加速度明显减小,且制动减速度、转弯半径越大控制效果越明显,在低路面附着系数下也能达到明显的控制效果,表明该方法可有效提高重型汽车在转向操纵下的横摆稳定性。  相似文献   

8.
独立驱动电动汽车横摆力矩的模糊控制算法   总被引:1,自引:0,他引:1  
利用驱动力矩独立可控的优点,设计了四轮独立驱动电动汽车直接横摆力矩的模糊控制系统,以提高整车的操纵稳定性。控制器的上层联合反馈横摆角速度和质心侧偏角两个控制变量的偏差,进行模糊PI控制计算出整车所需总的横摆力矩;控制器的下层根据各轮对横摆力矩的贡献、各轮驱动极限和附着极限制定模糊规则,将所需横摆力矩有效地分配到各轮。同时,应用主流的V模式开发方法实现控制算法的快速开发和验证:运用自动代码生成工具,分别将控制算法和整车模型下载到实际控制器和AD5435仿真机,进行硬件在环仿真。不同工况下的仿真结果分析表明:控制系统能够有效地改善车辆的操纵稳定性,控制算法具有可行性和高效性。  相似文献   

9.
基于横摆力矩的汽车制动稳定性模糊控制   总被引:3,自引:0,他引:3  
为避免汽车在对开路面制动时出现跑偏或侧滑等危险工况,提出了一种利用横摆力矩方法控制汽车制动稳定性的控制模式,设计了模糊控制器,按照所确定的控制策略进行了仿真。仿真与试验结果对比表明,利用所提出的汽车制动稳定性横摆力矩模糊控制方法,能减少汽车在路面附着系数相差较大的对开路面制动时的侧滑和激转,并使汽车在制动偏驶后能快速恢复到预期行驶车道,避免了汽车制动力不平衡引起的危险工况。  相似文献   

10.
对带有线控制动系统(brake by wire,BBW)的车辆进行研究,提出了一种横摆稳定性优化控制策略.以二自由度单轨车辆模型为参考模型,利用比例-积分(proportionalintegral,PI)控制算法求出附加横摆力矩.由所计算出的车辆附加横摆力矩、方向盘转角来识别驾驶员转向意图和车辆实际行驶特性,通过广义逆法和数学归划法相结合的方法将附加横摆力矩分配到作用车轮上,由线控制动系统采用主缸定频调压法对各轮缸的目标液压力进行跟踪控制.硬件在环试验结果表明,该控制策略能够有效地保证车辆在高附和低附路面工况下的横摆稳定性.  相似文献   

11.
再生制动是混合动力汽车区别于传统汽车的技术特点,是提高车辆燃油经济性的重要措施之一.以一种轴间力矩耦合的插电式并联混合动力汽车为研究对象,从再生制动分配算法的影响因素入手,提出了一种带有模糊控制的混合动力汽车再生制动能量管理策略.所设计的控制策略主要针对两个层面的控制决策,顶层是轴间制动力矩的分配决策,底层是再生制动电机所在的后轴力矩在摩擦制动与再生制动之间的分配决策.采用多种典型车辆行驶工况对所提出的模糊控制策略进行仿真研究.结果表明,所提出的模糊控制策略能够明显改善车辆的能量回收效果,与传统理想制动力分配曲线控制策略相比,能量回收最多可提高23.44%.  相似文献   

12.
为提高电动汽车的空间稳定性,开展基于轮毂电机和主动悬架的整车横摆-侧倾运动联合控制.分析了轮毂电机差动驱动联合主动悬架控制对车身横摆-侧倾运动的影响,制定了空间稳定性协同控制策略.以横摆角速度和质心侧偏角为状态变量,设计了基于参考模型的横摆稳定性控制器;以方向盘转角和侧向加速度为状态变量,设计了基于主动悬架侧倾抑制的前馈控制器;以侧倾角速度和侧倾角为状态变量,设计了基于反馈最优控制的侧倾稳定性控制器.建立了四轮驱动转矩和主动悬架力/力矩协调分配规则,通过联合仿真验证了控制策略的有效性.研究表明,轮毂电机差动驱动具有横摆稳定性控制能力和一定的侧倾辅助控制效果,联合主动悬架控制可以改善车辆的横摆-侧倾运动状态,大幅提高整车的空间稳定性.  相似文献   

13.
电动汽车驱动与再生制动的H∞鲁棒控制   总被引:1,自引:0,他引:1  
针对电动汽车在行驶过程中电池电压和道路状况有较大变化的特点,为保证闭环系统在参数摄动与未建模动态等不确定性影响下的鲁棒性,以及使外界干扰对系统的影响最小化,将电动汽车驱动与再生制动的控制问题转化为加权混合灵敏度问题,分别设计了电动汽车驱动与再生制动的H∞鲁棒控制器,并在不同道路状况和驾驶模式下进行了实验研究.实验结果表明,在不确定性影响和外界干扰的作用下,H∞鲁棒控制器的稳态误差及响应速度等控制指标均优于比例积分(PI)控制器,尤其在车辆制动过程中,H∞鲁棒控制器与PI控制器相比可以回收更多的能量,实际回收能量最大可增加约409/6.  相似文献   

14.
基于参数摄动的电动汽车再生制动鲁棒混合控制研究   总被引:3,自引:0,他引:3  
针对电动汽车再生制动过程中系统具有参数大范围摄动和强非线性的特点,综合H2最优控制和H∞鲁棒控制的优点,提出鲁棒H2/H∞混合控制策略.将系统主回路参数摄动到控制输入灵敏度函数的H∞范数作为鲁棒性能评价指标,电动汽车外加扰动到电机转速传递函数的H2范数作为线性高斯二次型性能指标.仿真和对比实验结果表明,鲁棒H2/H∞混合控制策略具有良好的控制效果,比传统的控制方法回收了更多的能量,同时抑制了系统参数大范围摄动、强非线性以及外界干扰的影响,从而大大提高了系统的鲁棒稳定性.  相似文献   

15.
为研究分布式电动车的操纵稳定性控制策略问题,将直接横摆力矩控制器设计为2个一阶线性自抗扰控制器,用于计算车辆维持稳定所需的横摆力矩。在转矩分配方面,根据路面附着和车辆状态调节目标函数的权值,采用二次规划算法计算得到电机输出转矩。应用硬件在环仿真平台进行了正弦迟滞和正弦递增实验,实验结果表明分布式电动车的操纵稳定性控制策略能够提高车辆的操稳性能,使得控制变量能够紧密跟踪期望值。   相似文献   

16.
针对分布式驱动电动汽车各车轮电机力矩和液压制动力矩可独立控制的特点,以操纵稳定性为目标,设计电机与液压制动复合分配的控制策略.控制策略采用分层控制的结构,上层运动控制器根据驾驶员输入和车辆状态的反馈求取广义力,下层控制分配器在执行器约束及速度约束下,考虑轮胎纵侧耦合特性对横摆转矩的影响,采用二次规划法进行转矩分配,实现车辆的稳定性控制效果.最后利用CARSIM和MATLAB软件对电液复合算法进行了联合仿真,并进行了实车试验来验证算法,最终的仿真和试验结果表明复合分配控制策略的控制效果相对仅用电机控制时要好,提高了车辆的稳定性控制效果.  相似文献   

17.
电动汽车制动能量回收最大化影响因素分析   总被引:5,自引:0,他引:5  
对再生制动的原理和能量流动进行了分析,并讲述了制动功率、再生制动功率、制动能量回收效率等之间的关系和计算方法.从分析中得出电机、蓄电池、液压制动系统是影响制动能量回收的主要因素,并重点分析了制动管路布置型式对制动能量回收的影响.针对典型的理想制动工况,计算出前轴电驱动汽车在制动能量回收方面的潜力和制动能量回收效率,但结果并不理想.通过对比发现,双轴电驱动汽车无论是在制动能量回收潜力还是在制动能量回收效率以及制动效能方面都有能力达到最优.  相似文献   

18.
 汽车工业在推动经济发展,提高人民生活水平的同时,也带来了能源短缺、环境污染和气候变暖等问题。电动汽车作为新能源汽车,是解决能源危机和环境污染问题最有效的途径。电动汽车的性能与驱动系统密切相关,研制和开发适合电动汽车各种行驶工况的驱动系统已成为电动汽车领域研究的重要内容。本文结合汽车行驶平衡方程和电机机械特性方程建立了纯电动汽车(EV)驱动系统的数学模型,采用模糊PI控制策略对模型进行优化控制,并在Simulink环境下对模型进行仿真验证。仿真结果表明,该纯电动汽车驱动系统的数学模型,能够真实准确地反映车辆的运行状态,采用模糊PI控制策略能够较好地对驱动系统进行优化控制,使得仿真车速对需求车速具有良好的跟随性。该模型具有较强的鲁棒性,适用于纯电动汽车驱动系统的仿真。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号