首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The formation of cluster orbitals in CsSn2Br5 is discussed and related more generally to tetragonal compounds of the type AB2X5 (A=monovalent cation; B=Sn, Pb; X=Cl, Br, I). The crystal structures of CsSn2Cl5 and CsSn2Br5 have been solved by single-crystal X-ray diffraction. These compounds are isostructural with each other and a range of AB2X5 structural analogues. In many AB2X5 compounds where B is a subvalent main group metal a tetragonal cell is observed with space group I4/mcm. The structures of CsSn2Br5 and CsSn2Cl5 are layered with polymeric sheets of [Sn2X5]nn separated by the Cs+ cations. Stereochemical considerations suggest that stabilization of this structural form, rather than the more ionic NH4Pb2Cl5 or NaSn2Cl5 structures, is through interaction of the “nonbonding” valence electron pairs on tin with low-lying empty d-orbitals on neighboring X atoms. Electronic structure calculations based on the structural data confirm the likelihood of cluster orbital formation. Crystal data: CsSn2Cl5, tetragonal, I4/mcm, a=8.153(1) Å, c=14.882(4) Å, Z=4, R1=0.0215, wR2=0.0503 [I>2σ(I)], R1=0.0393, wR2=0.0536 (all data); CsSn2Br5, tetragonal, I4/mcm, a=8.483(6) Å, c=15.28(2) Å, Z=4, R1=0.0607, wR2=0.1411 [(I>2σ(I)], R1=0.1579, wR2=0.1677 (all data).  相似文献   

2.
《Polyhedron》2004,23(18):3143-3146
The title complexes were synthesized in acetone by the reaction of [n-Bu4N]2[MoS4Cu4Cl4] and pzMe2 for compound 1, and n-Bu4NBr, [NH4]2[WS4], CuCl and pzMe2 for compound 2. X-ray diffraction studies of 1 and 2 demonstrate that four of the six edges of the tetrahedral [MS4]2− core are bridged by four copper atoms, giving a pentanuclear structure MS4Cu4(pzMe2)6X2 (M = Mo, W) with the five metal atoms essentially coplanar. The four Cu atoms exhibit two different coordination modes. Each of one pair of mutually trans Cu atoms is coordinated by two (μ3-S) atoms and two nitrogen atoms of pzMe2 rings, giving a distorted tetrahedral CuS2N2 arrangement. The other two mutually trans Cu atoms are coordinated by two (μ3-S) atoms, one nitrogen atom of pzMe2 and one terminal Cl or Br ligand, giving a distorted tetrahedral CuS2NX unit. In addition to being structurally studied by X-ray diffraction, the title compounds have been characterized by IR, UV–Vis and 1H NMR spectroscopy. The IR results, which include low-frequency M–Sb stretching bands, are consistent with the X-ray structural analysis and confirm that the [MS4]2− cores are coordinated through all four sulfur atoms in the complexes 1 and 2.  相似文献   

3.
Two new mixed-halide zirconium cluster phases have been synthesized by solid-state reactions in sealed tantalum containers from the Zr(IV) halides, elemental Zr and B, and NaI or CsCl, respectively. Single-crystal X-ray data were used to determine the crystal structures of Na[(Zr6B)Cl3.9I10.1], and Cs[(Zr6B)Cl2.2I11.8]. Both phases crystallize in a stuffed version of the [Nb6Cl14] structure type, orthorhombic, space group Cmca (Na[(Zr6B)Cl3.87(5)I10.13]: a=15.787(2) Å, b=14.109(2) Å, c=12.505(2) Å, Z=4, R1(F)=0.0322 and wR2(F2)=0.0842; Cs[(Zr6B)Cl2.16(5)I11.84]: a=15.696(4) Å, b=14.156(4) Å, c=12.811(4) Å, Z=4, R1(F)=0.0404 and wR2(F2)=0.1031). This structure type is constructed of clusters which contain centered (Zr6Z) octahedra of the type [(Zr6Z)X12iX6a] with Z=B and X=Cl and/or I. In both structures, chlorine and iodine atoms are randomly (to X-rays) distributed on the inner non-cluster-interconnecting ligand positions, whereas those sites which bridge metal octahedra are solely occupied by iodine. The phase widths for both phases have been found to cover 0x4 for AI[(Zr6B)ClxI14−x]. Whereas the sodium cations in Na[(Zr6B)ClxI14−x] occupy 25% of a site which is octahedrally surrounded by halogen atoms, the larger cations in the cesium-containing phase occupy a 12-coordinate site within the cluster network.  相似文献   

4.
Crystals of the trinuclear complex [(Me6C6)3Zr3Cl6][Al2Cl7]2 have been obtained from the reaction of ZrCl4, hexamethylbenzene, AlCl3, and Al in benzene. They are monoclinic, space group C2/2, with Z  4 and lattice parameters a 14.167(3), b 27.779(7), c 15.721(3) Å and β 94.27(4)°. The Zr atoms form a regular triangle. Each pair of Zr atoms is bridged by two Cl atoms. The fifth coordination site of each Zr atom is occupied by a h6-Me6C6 group. The cation is almost isostructural with the known trinuclear cation [(Me6C6)3Nb3Cl6]2+. Important distances are: ZrZr 3.35, ZrCl 2.56, and Zrcenter of C6 ring 2.17 Å. One of the two independent [Al2Cl7]? anions occurs in a staggered conformation and one occurs in an eclipsed conformation.  相似文献   

5.
We found new synthetic routes to obtain 1-D quaternary thiophosphate compounds and a 0-D molecular complex containing a Nb2S4 core from a 2-D ternary thiophosphate, Nb4P2S21. When Nb4P2S21 was reacted with alkali metal halides (ACl; A=Na, K, Rb, Cs) or TlCl at 500-700 °C, the -S-S-S- bridges in 2-D Nb2PS10-S-S10PNb2 were excised to form a 1-D chain, and cations were inserted between the chains to form ANb2PS10 (A=Na, K, Rb, Cs, Tl). We also found that thallium chloride (TlCl) is an excellent reagent for further excision, and it substitutes chloride ligands for the sulfur ligands of 2-D Nb4P2S21 to form the molecular complex Tl5[Nb2S4Cl8]Cl. Crystal data for TlNb2PS10: monoclinic, Pn, a=6.9452(11) Å, b=7.3761(12) Å, 12.873(2) Å, β=104.472(3)°, and Z=2. Crystal data for Tl5[Nb2S4Cl8]Cl: orthorhombic, Immm, a=7.001(5) Å, b=9.509(7) Å, c=15.546(11) Å, and Z=2.  相似文献   

6.
The new compound Nb3Se5Cl7 was prepared by heating 2NbSe2Cl2 + 1NbCl4 at 530°C for 2–3 weeks. The compound is monoclinic with a = 7.599, b = 12.675, c = 8.051Å; β = 106.27°; space group P21m. The corresponding bromide, Nb3Se5Br7 (obtained by decomposition of NbSe2Br2 under NbSeBr3), is isotypic with a = 7.621, b = 12.833, c = 8.069Å; β = 106.21°. from the crystal structure and XPS spectra it follows that Nb3Se5Cl7 can be formulated as: [Nb4+2Nb5+1(Se2)2?2Se2?1Cl?7]. The structure consists of chains of composition [Nb4+2(Se2)2?2Cl?5], to which side chains [Nb5+Se2?Cl?2] are attached. The Nb4+ atoms form pairs (NbNb = 2.94 Å) which explains that Nb3Se5Cl7 is a diamagnetic semiconductor with a band gap (1.59 eV at 5°K, 1.49 eV at 300°K) very similar to that of NbSe2Cl2.  相似文献   

7.
Dizinc selenium dichloride trioxide, β‐Zn2(SeO3)Cl2, a monoclinic polymorph of the orthorhombic mineral sophiite, has a structure built of distorted ZnO4Cl2 octahedra, ZnO2Cl2 tetrahedra and SeO3E tetrahedra (E being the 4s2 lone pair of the SeIV ion), joined through shared edges and corners to form charge‐neutral layers. The Cl atoms and the Se lone pairs protrude from each layer towards adjacent layers. The main structural difference between the mineral and synthetic polymorphs lies in the packing of the layers.  相似文献   

8.
A new series of quaternary niobium chloride cluster compounds corresponding to the general formula, A2VNb6Cl18 (A=Rb, Tl or In), has been prepared in sealed quartz tubes from a mixture containing NbCl5, Nb, VCl3 and RbCl, or In or Tl metal by solid state reactions at 750°C. The structure of Tl2VNb6Cl18 was determined using single-crystal X-ray diffraction: Crystal data: rhombohedral, (No. 148), a=9.1122(17), c=25.178(7) Å, V=1810.5(7) Å3 and Z=3. The full-matrix least-squares refinement against F2 converged to R1=0.0515, wR2=0.1104 (all data). The structure consists of discrete octahedral cluster units, [Nb6Cli12Cla6]4− linked by V2+ and A+ cations, located in a 6-coordinated octahedral and 12-coordinated anticubeoctahedral chloride environment, respectively. The intra-cluster bond lengths indicate 16 valence electrons per cluster. Magnetic susceptibility studies show paramagnetic behavior with a magnetic moment of 3.37 μB per formula unit. Electrical resistivity measurements indicate a semiconducting behavior.  相似文献   

9.
On the chemistry of the elements niobium and tantalum. 84. The niobium and tantalum complexes [Me6X]X · n H2O with Me = Nb, Ta; X1 = Cl, Br; Xa = Cl, Br, J The known and unknown compounds mentioned in the title were prepared. In this group of compounds four different crystal structures (A, B, C, D) occur. Lattice constants are given of the six compounds with structure C which crystallize in the hexagonal system and are isotypic with Ba2[Nb6Cl12]Cl6. Regarding the IR-spectra and the thermal behaviour, possible principles of structure are discussed.  相似文献   

10.
The reaction of metallic bismuth with either tungsten tetrachlorideoxide WOCl4 at 650 K or tungsten tetrabromideoxide WOBr4 at 670 K, respectively, leads to BiX2[W2O2X6] (X = Cl, Br) as black, lustrous crystal needles. The crystal structure determinations (triclinic, P$\bar{1}$ ) show the two isotypic structures to be closely related to Hg0.55[W2O2Cl6] with the presence of 1D‐polymeric W2O2X6 double strands. Dinuclear [Bi2X4]2+ cations are embedded in the host structure via secondary W–X ··· Bi bonds. Unlike the other members of theMy[W2O2X6] structure family, which crystallize monoclinic and show crystallographic equivalent tungsten atoms, BiX2[W2O2X6] has independent tungsten sites. Nevertheless, an assignment of an individual oxidation state to the tungsten atoms within the W2 group (W–W 2.8321(4) Å for X = Cl, 2.8985(4) Å for X = Br) is not possible and a dynamic intervalent state W(IV, V) is assumed. Electrical conductivity measurements for BiCl2[W2O2Cl6] show semi‐conductive behavior with a very small band gap of 70 meV and a high conductivity of around 0.5 Ω–1cm–1 at temperatures above 220 K. A temperature dependence of the activation energy of charge transport is present and interpreted by the Varshni model.  相似文献   

11.
Six quaternary alkali-metal rare-earth copper tellurides K3Ln4Cu5Te10 (Ln=Sm, Gd, Er), Rb3Ln4Cu5Te10 (Ln=Nd, Gd), and Cs3Gd4Cu5Te10 have been synthesized at 1123 K with the use of reactive fluxes of alkali-metal halides ACl (A=K, Rb, Cs). All crystallographic data were collected at 153 K. These compounds crystallize in space group Pnnm of the orthorhombic system with two formula units in cells of dimensions (A3Ln4, a, b, c (Å)): K3Sm4, 16.590(2), 17.877(2), 4.3516(5); K3Gd4, 16.552(4), 17.767(4), 4.3294(9); K3Er4, 16.460(4), 17.550(4), 4.2926(9); Rb3Nd4, 17.356(1), 17.820(1), 4.3811(3); Rb3Gd4, 17.201(2), 17.586(2), 4.3429(6); Cs3Gd4, 17.512(1), 17.764(1), 4.3697(3). The corresponding R1 indices for the refined structures are 0.0346, 0.0315, 0.0212, 0.0268, 0.0289, and 0.0411. The three K3Ln4Cu5Te10 structures belong to one structure type and the Rb3Ln4Cu5Te10 (Ln=Nd, Gd) and Cs3Gd4Cu5Te10 structures belong to another one, the difference being the location of one of the three unique Cu atoms. Both structure types are three-dimensional tunnel structures that contain similar Ln/Te fragments built from LnTe6 octahedra and CuTe4 tetrahedra. The CuTe4 tetrahedra form 1[CuTe5−3] and 1[CuTe3−2] chains. The alkali-metal atoms, which are in the tunnels, are coordinated to seven or eight Te atoms.  相似文献   

12.
The ternary compounds KFeS2, RbFeS2, KFeSe2, and RbFeSe2 were prepared and their crystal structures were determined from single-crystal diffractometer data. The atomic arrangement in the isotypic compounds (space group C2/c) is characterized by tetrahedra of chalcogen atoms. Those tetrahedra are centered by iron ions and linked by edges, thus forming chains of 1[FeX4/2] frameworks (X S or Se). Susceptibility measurements are reported. Neutron difraction experiments on powdered samples revealed magnetic structures in the antiferromagnetically ordered state. The magnetic moments of the iron ions shows a significant dependence of the atomic arrangement. Therefore calculations based on a simple point charge model are discussed to correlate the magnetic moments and crystal field splittings.  相似文献   

13.
The heat capacity and the enthalpy increments of strontium niobate Sr2Nb2O7 and calcium niobate Ca2Nb2O7 were measured by the relaxation time method (2–300 K), DSC (260–360 K) and drop calorimetry (720–1370 K). Temperature dependencies of the molar heat capacity in the form Cpm = 248.0 + 0.04350T − 3.948 × 106/T2 J K−1 mol−1 for Sr2Nb2O7 and Cpm = 257.2 + 0.03621T − 4.434 × 106/T2 J K−1 mol−1 for Ca2Nb2O7 were derived by the least-square method from the experimental data. The molar entropies at 298.15 K, Sm°(298.15 K) = 238.5 ± 1.3 J K−1 mol−1 for Sr2Nb2O7 and Sm°(298.15 K) = 212.4 ± 1.2 J K−1 mol−1 for Ca2Nb2O7, were evaluated from the low-temperature heat capacity measurements.  相似文献   

14.
Ferrocenylmethyldimethylamine, FcCH2NMe2, reacts with CH2Cl2 in either the presence or absence of non-coordinating counterions to give equimolar amounts of the bis(ferrocenylmethyl)dimethyl ammonium salts (FcCH2)2NMe2+X (X=PF6, SbF6, BPh4 or Cl, 1ad) and the corresponding protonated ammonium salts FcCH2NMe2H+ which have been isolated as the SbF6 and Cl salts 2b,d. The reaction proceeds via fragmentation of an intermediate quaternary chloromethylated ammonium ion to chloromethylferrocene, FcCH2Cl, and dimethyliminium chloride NMe2CH2+Cl. The parent amine acts as a nucleophile toward FcCH2Cl to give 1ad and as a base toward NMe2CH2+ to give FcCH2NMe2H+, NMe2H and (Me2N)2CH2. The FcCH2Cl intermediate is intercepted by NEt3 while KCN or LiH do not successfully compete with FcCH2NMe2. A new, non-toxic, selective, high-yield route to 1d is also presented. Electrochemistry and UV–vis spectroelectrochemistry reveal, that the two identical redox centers in 1ad are essentially non-interacting. Individual E1/2 values have been determined for different solvents by digital simulation. The corresponding ferrocenium salts were prepared by either chemical or electrochemical means and accordingly characterized. Our studies are augmented by X-ray structure analyses of 1b, 1d and 2d. 1d contains three different cation conformers and four molecules of water per unit cell. The latter are hydrogen bonded to the chloride counterions to form one-dimensional infinite chains parallel to the a axis.  相似文献   

15.
Octahedral clusters of the [M6X12] type offer numerous possibilities to form structural arrangements through different choices of bonding situations. In this paper a series of new cluster compounds of the transition metal niobium is described, which consist of the [Nb6Cl18]2–, and in one case [Nb6Cl18]3–, anion and protonated N-base cations ([MIm-H]+, [nPr3N-H]+, [TMGu-H]+, and [Tzn-H]+). They all are prepared using water scavenger compounds [SOCl2 or (Ac)2O] under oxidising conditions, resulting in two-electron (or one-electron, respectively) oxidized cluster units with respect to the starting material [Nb6Cl14(H2O)4] · 4H2O. Of five members of this group single-crystal X-ray structures were determined. The cluster anions exist in all structures as discrete units. The acidic H atoms of all N-bases are hydrogen bonded to H acceptors, in 4 cases to outer, exo bonded Cl atoms of the cluster unit and in one case to the O atom of a co-crystallized THF molecule. In [TMGu-H]2[Nb6Cl18] chains of cluster anions exist hydrogen-bonded through bridging [TMGu-H]+ cations. ESI mass spectra of [MIm-H]2[Nb6Cl18] · 2SOCl2 and [TMGu-H]2[Nb6Cl18] show the expected isotopic distribution patterns for the anions together with other peaks associated to chloride mass losses and/or reduction processes.  相似文献   

16.
The triclinic nature of the low-temperature modification of LiSn2(PO4)3, heretofore considered as monoclinic, has been proved by detailed indexing of its X-ray diffraction powder pattern. The triclinic character of most low-temperature polymorphs of NASICON-type LiMeIV2(PO4)3is tentatively hypothesized, from this evidence and additional indications.  相似文献   

17.
Compounds consisting of both cluster cations and cluster anions of the composition [(M6X12)(EtOH)6][(Mo6Cl8)Cl4X2] · n EtOH · m Et2O (M = Nb, Ta; X = Cl, Br) have been prepared by the reaction of (M6X12)X2 · 6 EtOH with (Mo6Cl8)Cl4. IR data are given for three compounds. The structures of [(Nb6Cl12)(EtOH)6][(Mo6Cl8)Cl6] · 3 EtOH · 3 Et2O 1 and [(Ta6Cl12)(EtOH)6][(Mo6Cl8)Cl6] · 6 EtOH 2 have been solved in the triclinic space group P1 (No. 2). Crystal data: 1 , a = 10.641(2) Å, b = 13.947(2) Å, c = 15.460(3) Å, α = 65.71(2)°, β = 73.61(2)°, γ = 85.11(2)°, V = 2005.1(8) Å3 and Z = 1; 2 , a = 11.218(2) Å, b = 12.723(3) Å, c = 14.134(3) Å, α = 108.06(2)°, β = 101.13(2)°, γ = 91.18(2)°, V = 1874.8(7) Å3 and Z = 1. Both structures are built of octahedral [(M6Cl12)(EtOH)6]2+ cluster cations and [(Mo6Cl8)Cl6]2– cluster anions, forming distorted CsCl structure types. The Nb–Nb and Ta–Ta bond lengths of 2.904 Å and 2.872 Å (mean values), respectively, are rather short, indicating weak M–O bonds. All O atoms of coordinated EtOH molecules are involved in H bridges. The Mo–Mo distances of 2.603 Å and 2.609 Å (on average) are characteristic for the [(Mo6Cl8)Cl6]2– anion, but there is a clear correlation between the number of hydrogen bridges to the terminal Cl and the corresponding Mo–Cl distances.  相似文献   

18.
The layered compound Ta3SBr7has been prepared by direct reaction of the elements at 550°C for 2 weeks in evacuated Pyrex ampules, and its structure determined by single-crystal X-ray diffraction. Ta3SBr7crystallizes with monoclinic symmetry in space groupCm;a=12.249(2) Å,b=7.071(2) Å,c=8.829(2) Å,β=134.421(8)°,V=546.16(23) Å3,Z=2,R=0.027,R=0.032. The structure, related to the Cd(OH)2type, consists of triangular tantalum clusters located between every other layer of a closed-packed mixed S/SBr ordered anion framework. The slightly distorted, quasi-infinite2[Ta3SBr7] slabs stack parallel to the crystallographicabplane in a new variant, with each successive2[Ta3SBr7] slab related by a 1/2b+c stacking vector. This stacking mode is the sixth layered structure type observed in theM3QX7system. Ta3SBr7represents the first Ta3QX7compound discovered that is not isostructural with its niobium counterpart and is the second of the two one-slab per unit cell stacking types possible in theM3QX7system Nb3SBr7being the other. Synthesis, structural characterization, and lattice energy calculations of Ta3SBr7and related compounds are reported.  相似文献   

19.
Vibrational Spectra of the Cluster Compounds (M6X12i) · 8H2O, M = Nb, Ta; Xi = Cl, Br; Xa = Cl, Br, I IR and, for the first time, Raman spectra at 80 K of the cluster compounds (M6X)X · 8H2O; M = Nb, Ta; Xi = Cl, Br; Xa = Cl, Br, I, have been recorded, characterized by typical frequencies of the (M6X) unit, which are only slightly influenced by the terminal Xa ligands. The most intense line with the depolarisation ≈? 0.2 in all Raman spectra is caused by inphase movement of all atoms and assigned to the symmetric metal-metal vibration v1, observed for the clusters (Nb6Cl) at 233–234, for (Nb6Br) at 186–187, for (Ta6Cl) at 199–203, and for (Ta6Br) at 176–179 cm?1. The IR spectra exhibit in the same series intense bands at 233, 204, 207, and 179 cm?1, assigned to the antisymmetric metal-metal vibration. The metal-metal frequencies are significantly higher than discussed before. The tantalum clusters show on excitation with the krypton line 647.1 nm in the region of a d–d transition at 645 nm a resonance Raman effect with series of overtones and combination bands. In case of (Ta6Br) another polarisized band is observed at 229 cm?1 and assigned to the Ta? Bri vibration v2. From the progressions of v1 and v2 anharmonicity constants of about ?3 cm?1 are calculated indicating a strong distortion of the potential curves.  相似文献   

20.
Slow crystallization of (PyrH)2[Nb6Cl18] from hot ethanol solution affords triclinic (PyrH)2[Nb6Cl18]·EtOH. Treatment of [Nb6Cl14(H2O)4]·4H2O with pyridine in a methanol solution gives the second title compound, the cubic modification of (PyrH)2[Nb6Cl18]. Both structures were determined by single crystal X-ray diffraction, (PyrH)2[Nb6Cl18]·EtOH: P1¯, a=9.3475(3), b=9.3957(3), c=10.8600(3) Å, α=82.582(1)°, β=78.608(1)°, and γ=78.085(1)°, Z=1, R1(F)/wR2(F2)=0.0254/0.0573, cub.-(PyrH)2[Nb6Cl18]: Fd3¯m, a=19.935(2) Å, Z=8, R1(F)/wR2(F2)=0.0557/0.1796. The cluster compounds contain isolated, molecular [Nb6Cli12Cla6]2− cluster anions with an octahedron of metal atoms edge bridged by chlorido ligands with additional ones on all the six exo positions. These cluster anions are separated by the pyridinium cations and ethanol solvent molecules, respectively. For the cubic modification of (PyrH)2[Nb6Cl18], a structural comparison is given to the known rhombohedral modification using the group-subgroup relations as expressed by a Bärnighausen tree.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号