首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 350 毫秒
1.
Three new centrosymmetric dinuclear copper(II) complexes, [Cu2Cl2(L1)2] (1), [Cu2(μ 1,3-NCS)2(L2)2] (2), and [Cu2(μ 1,1-N3)2(L3)2] (3), where L1, L2, and L3 are the deprotonated forms of the Schiff bases 1-[(2-propylaminoethylimino)methyl]naphthalen-2-ol (HL1), 1-[(3-methylaminopropylimino)methyl]naphthalen-2-ol (HL2), and 2-[(2-isopropylaminoethylimino)methyl]phenol (HL3), respectively, have been prepared and characterized by elemental analysis, IR spectra, and single-crystal X-ray crystallography. Each Cu is coordinated by the three donors of the Schiff bases and by two bridging groups, forming a square-pyramidal geometry.  相似文献   

2.
The Schiff bases (imines) HL1 and HL2 have been synthesized by the reaction of 5-bromothiophene-2-carboxaldehyde with 4-amino-5-mercapto-1,2,4-triazole and 4-amino-3-ethyl-5-mercapto-1,2,4-triazole, respectively. Organosilicon(IV) and organotin(IV) complexes having the general formulae R2MCl(L1), R2MCl(L2), R2M(L1)2, R2M(L2)2, (M = Si, Sn; R = CH3) were synthesized by the reaction of R2MCl2 with these Schiff bases in 1:1 and 1:2 molar ratio. The Schiff bases and their metal complexes have been characterized with the aid of elemental analyses, molar conductance, and spectroscopic studies, including UV, IR, 1H, 13C, MS, 29Si, and 119Sn NMR spectroscopy. On the basis of these studies, the resulting complexes have been proposed to have trigonal bipyramidal and octahedral geometries. In vitro activities of the Schiff bases and their metal complexes against some Gram positive and Gram negative bacteria and fungi have been carried out and described.  相似文献   

3.
Four new nickel(II), zinc(II), and cobalt(II) complexes, [Zn(L1)2]?·?H2O (1), [Ni(L1)2]?·?H2O (2), [Ni(L2)2] (3), and [Co(L3)2]?·?H2O (4), derived from hydroxy-rich Schiff bases 2-{[1-(5-chloro-2-hydroxyphenyl)methylidene]amino}-2-methylpropane-1,3-diol (HL1), 2-{[1-(2-hydroxy-3-methoxyphenyl)methylidene]amino}-2-ethylpropane-1,3-diol (HL2), and 2-{[1-(5-bromo-2-hydroxyphenyl)methylidene]amino}-2-methylpropane-1,3-diol (HL3) have been synthesized and characterized by elemental analyses, infrared spectroscopy, and single-crystal X-ray determination. Each metal in the complexes is six-coordinate in a distorted octahedral coordination. The Schiff bases coordinate to the metal atoms through the imino N, phenolate O, and one hydroxyl O. In the crystal structures of HL1 and the complexes, molecules are linked through intermolecular O–H···O hydrogen bonds, forming 1-D chains. The urease inhibitory activities of the compounds were evaluated and molecular docking study of the compounds with the Helicobacter pylori urease was performed.  相似文献   

4.
Four novel ON donor Schiff bases (E)-3-((4-phenoxyphenylimino)methyl)benzene-1,2-diol (HL1),(E)-3-((4-(4-biphenyloxy)phenyliminomethyl)benzene-1,2-diol (HL2), (E)-3-((4-naphthoxyphenylimino)methyl)benzene-1,2-diol (HL3), (E)-3-((4-(2-naphthoxy)phenylimino)methyl)benzene-1,2-diol (HL4) and their copper(II) complexes bis((E)-3-((4-phenoxyphenylimino)methyl)benzene-1,2-diol) copper(II) (Cu(L1)2) bis((E)-3-((4-(4-biphenyloxy)phenylimino)methyl)benzene-1,2-diol) copper(II) (Cu(L2)2), bis((E)-3-((4-naphthoxyphenylimino)methyl)benzene-1,2-diol) copper(II) (Cu(L3)2), bis((E)-3-((4-(2-naphthoxy)phenylimino)methyl)benzene-1,2-diol) copper(II) (Cu(L4)2) have been synthesized and characterized by spectroscopic (FTIR, NMR, UV–visible) and elemental analysis. The crystal structures of HL1, HL2, HL3, and HL4 have been determined, which reveal intramolecular N-H?O (HL1, HL2, HL3, and HL4) hydrogen bonds in the solid state. Keto-amine and enol-imine tautomerism is exhibited by the Schiff bases in solid and solution states. The Schiff bases and their copper(II) complexes have been screened for their biological activities. In antimicrobial assays (antibacterial and antifungal), HL4 showed promising results against all strains through dual inhibition property while the rest of the compounds showed activity against selective strains. On the other hand, in cytotoxic, DPPH, and inhibition of hydroxyl (OH) free radical-induced DNA damage assays, the results were found significantly correlated with each other, i.e. the ligands HL1 and HL2 showed moderate activity while their complexes Cu(L1)2 and Cu(L2)2 exhibited prominent increase in activity. As the results of these assays are supporting each other, it represents the strong positive correlation and antioxidant nature of investigated compounds.  相似文献   

5.
Condensation of 1H-indole-2,3-dione (isatin) with (R)-(Ar)-ethylamines gives enantiopure Schiff bases, 3-{(R)-(Ar)-ethylimino}-1,3-dihydro-indol-2-one (HL) {Ar?=?Ph (HL1), 2-MeOC6H4 (HL2), 4-MeOC6H4 (HL3), 4-BrC6H4 (HL4), and 1-naphthyl (HL5)}. The Schiff bases readily coordinate to [Rh(μ-O2CMe)(η4-cod)]2 (cod?=?1,5-cyclooctadiene) to give mononuclear [Rh(η4-cod){3-((R)-(Ar)-ethylimino)-3H-indol-2-olato}] {Ar?=?Ph (1), 4-MeOC6H4 (2), and 4-BrC6H4 (3)}, respectively. The Schiff bases and complexes have been fully characterized by IR, UV-Vis, 1H-NMR, mass, and circular dichroism (CD) spectrometry. Polarimetry and CD measurements show the enantiopurity of the Schiff bases as well as the complexes. 1H NMR measurements reveal slow conversion of the lactam to the enol form of the Schiff bases in solution. In the solid state the lactam form dominates as shown by crystal structures of HL1 and HL4. While gross structural features of both are similar, the molecules differ significantly in the relative orientations of the aryl and lactam rings. The difference is mostly rotation about the N2–C9 bond with different C8–N2–C9–C11 torsion angle of +89.77(12)° for HL1 and C2–N2–C9–C11 of +106.8(3)° for HL4.  相似文献   

6.
A series of binuclear Schiff-base complexes of zinc(II) and mercury(II) containing bidentate ligands (HL) [HL?=?salicylidene-2-methyl-1-aminobenzene (HL1), salicylidene-2-aminopyridine (HL2), and salicylidene-3-nitro-1-aminobenzene (HL3)] with “N” and “O” donors have been synthesized by simple metathetic reactions of anhydrous metal chlorides with sodium salts of Schiff bases (in tetrahydrofuran (THF)/MeOH) in equimolar ratio to produce [(µ-Cl)2M2(L)2?·?xTHF] [where M?=?Zn(II) and Hg(II); L?=?HL1, HL2, and HL3; x?=?0 for (1), (4), (6) and x?=?2 for (2), (3), (5)]. The main emphasis on the complexes [(µ-Cl)2M2(L)2?·?2THF] (2), (3), and (5) is given due to their five-coordinate environment around metal ions. The complexes have been characterized by elemental analyses (M, Cl, C, H, N), melting point, and spectral (FT-IR, 1H-NMR, and 13C-NMR) studies. The structural composition of the complexes has been determined by FAB-MS spectral studies. FAB-MS showed the isotopic molecular ion peak [M+] and fragments supporting the formulation. Powder X-ray diffraction study of 6 is also reported showing the crystallite size (404.5?Å) of the complex.  相似文献   

7.
Four tridentate ONS ligands, namely 2-hydroxyacetophenonethiosemicarbazone (H2L1), the 2-hydroxyacetophenone Schiff base of S-methyldithiocarbazate (H2L2), the 2-hydroxy-5-nitrobenzaldehyde Schiff base of S-methyldithiocarbazate (H2L3), and the 2-hydroxy-5-nitrobenzaldehyde Schiff base of S-benzyldithiocarbazate (H2L4), and their complexes of general formula [Ni(HL1)2], [ML] (M?=?NiII or CuII; L?=?L1, L2, L3 and L4), [Co(HL)(L); L?=?L1, L2, L3 and L4] and [ML(B)] (M?=?NiII or CuII; L?=?L2 and L4; B?=?py, PPh3) have been prepared and characterized by physico-chemical techniques. Spectroscopic evidence indicates that the Schiff bases behave as ONS tridentate chelating agents. X-ray crystallographic structure determination of [NiL2(PPh3)] and [CuL4(py)] indicates that these complexes have an approximately square-planar structure with the Schiff bases acting as dinegatively charged ONS tridentate ligands coordinating via the phenoxide oxygen, azomethine nitrogen and thiolate sulfur atoms. The electrochemical properties of the complexes have been studied by cyclic voltammetry.  相似文献   

8.
Two isomeric Schiff bases, HL 1  = 1-[(2-dimethylamino-ethylimino)-methyl]-naphthalen-2-ol and HL 2  = 1-[(2-ethylamino-ethylimino)-methyl]-naphthalen-2-ol, have been used to prepare copper(II) complexes in presence of thiocyanate. HL 1 forms a mononuclear complex [Cu(L 1 )NCS] with terminal thiocyanate, whereas the isomeric Schiff base HL 2 , which is capable of hydrogen bonding, gives a dimeric complex, [Cu2 (L 2 ) 2(NCS)2], with double μ-1,1-NCS bridges. Both complexes are characterized by physico-chemical and spectroscopic methods as well as by single crystal X-ray diffraction studies.  相似文献   

9.
A number of mononuclear manganese(II) and manganese(III) complexes have been synthesized from tridentate N2O aminophenol ligands (HL1–HL5) formed by reduction of corresponding Schiff bases with NaBH4. Three types of tridentate N2O aminophenols have been prepared by reducing with NaBH4which are (a) Schiff bases obtained by bromo salicylaldehyde reaction with N,N-dimethyl/N,N-diethyl ethylene diamine (HL1, HL2), (b) Schiff bases obtained by condensing salicylaldehyde/bromo salicylaldehyde and picolyl amine (HL3, HL4), (c) pyridine-2-aldehyde and 2-aminophenol (HL5). All the manganese complexes have been prepared by direct addition of manganese perchlorate to the corresponding ligands and were characterized by the combination of i.r., u.v.–vis spectroscopy, magnetic moments and electrochemical studies. The u.v.–vis spectra of all of the manganese(III) complexes show two weak d–d transitions in the 630–520 nm region, which support a distorted octahedral geometry. The electron transfer properties of all of the manganese(III) complexes (1–4 and 6) exhibit mostly similar characteristics consisting two redox couples corresponding to the MnIII → MnII reductions and MnIII → MnIV oxidations. The electronic effect on the potential has also been studied by changing different substituents in the ligands. In all cases, an electron-donating group stabilizes the higher oxidation state and electron withdrawing group prefers the lower oxidation state. The cyclic voltammogram of [MnII(L5)2] shows an irreversible oxidation MnII → MnIII at −0.88 V, followed by another quasi-reversible oxidation MnIII → MnIV at +0.48 V. The manganese(III) complex (3) [Mn(L3)2]ClO4has been characterized by X-ray crystallography.  相似文献   

10.
Three azido-bridged copper(II) complexes, [Cu2(L1)21,1,3-N3)2] n ·2nH2O (1), [Cu4(L2)41,1-N3)21,1,3-N3)2] n (2), and [Cu2(L3)21,1-N3)2] (3), where L1, L2, and L3 are the deprotonated forms of 4-bromo-2-[(2-methylaminoethylimino)methyl]phenol (HL1), 4-bromo-2-[(2-ethylaminoethylimino)methyl]phenol (HL2), and 4-bromo-2-[(2-isopropylaminoethylimino)methyl]phenol (HL3), respectively, have been prepared and structurally characterized by single-crystal X-ray diffraction analysis and IR spectra. The slight differences in the terminal groups of the Schiff bases lead to different bridging modes of the azido groups.  相似文献   

11.
The Schiff bases H2L1 and H2L2 have been prepared by the reaction of 2-amino-4-chlorophenol with pyrrole-2-carbaldehyde and 2-hydroxy-1-naphtaldehyde, respectively, and HL3 from reaction of 2-(aminomethyl)pyridine with 2-hydroxy-1-naphtaldehyde. Organotin complexes [SnPh2(L1)] (1), [SnPh2(L2)] (2), [SnMe2(L2)] (3) and [SnPhCl2(L3)] (4) were synthesized from reaction of SnPh2Cl2 and SnMe2Cl2 with these Schiff bases. The synthesized complexes have been investigated by elemental analysis and FT-IR, 1H NMR and 119Sn NMR spectroscopy. In complexes the Schiff bases are completely deprotonated and coordinated to tin as tridentate ligands via phenolic oxygen, pyrrolic, and imine nitrogens in 1, two phenolic oxygens and imine nitrogen in 2 and 3, and phenolic oxygen, imine and pyridine nitrogens in 4. The coordination number of tin in 1, 2, and 3 is five and in 4 is six.  相似文献   

12.
Eight Schiff base compounds were prepared by condensation of 1-amino-2-propanol with different benzaldehydes in water. One of the Schiff bases, (z)-N-bezylidene-2-hydroxypropane-1-amine (HL1), was used as a bidentate ligand for preparation of a zirconium complex (Zr(L1)2Cl2). The complex has been used as a catalyst for efficient synthesis of wide variety of indole derivatives in EtOH under mild conditions. The turnover number and reusability of the catalyst indicate that it has high efficiency and is fairly stable under the reaction conditions.  相似文献   

13.
Three new Cu(II) complexes, [Cu(HL1)(pyridine)(H2O)](ClO4)2·2MeOH (1), [Cu2(HL1)2(NO3)2](NO3)2·3H2O (2) and [Cu(HL2)(NO3)2]·MeCN (3), have been synthesized from two Schiff base ligands [HL1 = 1-phenyl-3-((2-(piperazin-4-yl)ethyl)imino)but-1-en-1-ol and HL2 = 4-((2-(piperazin-1-yl)ethyl)imino)pent-2-en-2-ol] using the chair conformer of a flexible piperazinyl moiety. Structural analysis reveals that 1 and 3 are monomeric Cu(II) complexes consisting of five- and six-coordinate Cu(II), respectively, whereas 2 is a dinuclear Cu(II) complex consisting of two different Cu(II) centers, one square planar with the other distorted octahedral. Screening tests were conducted to quantify the binding of 13 towards DNA and BSA as well as the DNA cleavage activity of these complexes using gel electrophoresis. Enzyme kinetic studies were also performed for the complexes mimicking catecholase-like activities. Antibacterial activities of these complexes were also examined towards Methicillin-Resistant Staphylococcus aureus bacteria. The results reflect that 2 is more active than the monomeric complexes, which is further corroborated by density functional theory study.  相似文献   

14.
Three new copper(II) complexes [CuL1N3]2 (1), [CuL2N3] (2) and [CuL3N3] (3) with three very similar tridentate Schiff base ligands [HL1?=?6-diethylamino-3-methyl-1-phenyl-4-azahex-3-en-1-one, HL2?=?6-amino-3-methyl-1-phenyl-4-azahex-3-en-1-one and HL3?=?6-amino-3-methyl-1-phenyl-4-azasept-3-en-1-one] have been synthesized and structurally characterized by X-ray crystallography. In complex 1 half of the molecules are basal-apical, end-on azido bridged dimers and the remaining half are square-planar monomers whereas all the molecules in complexes 2 and 3 are monomers with square-planar geometry around Cu(II). A competition between the coordinate bond and H-bond seems to be responsible for the difference in structure of the complexes.  相似文献   

15.
Reactions of hydrated zinc(II) trifluoroacetate and sodium azide with two tridentate Schiff bases HL1 (2-((E)-(2-(dimethylamino)ethylimino)methyl)-4-chlorophenol) and HL2 (2-((E)-(2-(dimethylamino)ethylimino)methyl)-4-bromophenol) under the same reaction conditions yielded two dinuclear isostructural zinc(II) complexes, [Zn(L1)(N3)]2 (1) and [Zn(L2)(N3)]2 (2), respectively. The complexes were characterized systematically by elemental analysis, UV–Vis, FT-IR, and 1H NMR spectroscopic methods. Single-crystal X-ray diffraction studies reveal that each of the dinuclear complexes consists of two crystallographically independent zinc(II) ions connected by double bridging phenoxides. All zinc(II) ions in 1 and 2 are surrounded by similar donor sets and display distorted square–pyramidal coordination geometries. The ligands and complexes reveal intraligand 1(π → π*) flourescence. The enhancement of the fluorescence intensities for the complexes compared to the ligands indicates their potential to serve as photoactive materials.  相似文献   

16.
Abstract

Schiff bases S-benzyl- and S-methyl-β-N-(2-hydroxyphenyl)methylene dithiocarbazate (H2L1 and H2L2, respectively) and S-benzyl- and S-methyl-β-N-(2-chlorophenyl)methylenedithiocarbazate (HL3 and HL4, respectively) were prepared. Then organotin(IV) complexes [SnPh2(L1)] (1), [SnMe2(L1)] (2), [SnPh2(L2)] (3), [SnMe2(L2)] (4), [SnPh2Cl(L3)] (5), and [SnPh2Cl(L4)] (6) were obtained from the reaction of Schiff bases with SnR2Cl2 (R = Ph and Me). The synthesized complexes have been investigated by elemental analysis and IR, 1H NMR, and 119Sn NMR spectroscopy. Spectroscopic studies show that, in complexes 1–4, the Schiff base acts as a tridentate dianionic ligand and coordinates through the thiol group, imine nitrogen, and phenolic oxygen. The coordination number of tin is five. In complexes 5 and 6, the ligand is monoanionic and unidentate, and coordinated only via the thiol group, and the azomethine nitrogen is not involved in coordination to tin. Therefore the coordination number of tin is four.

GRAPHICAL ABSTRACT   相似文献   

17.
The Schiff bases H2La, H2Lb, and H2Lc have been prepared from the reaction of 2-amino-4-chlorophenol with acetylacetone, benzoylacetone, and dibenzoylmethane, respectively. Organotin(IV) complexes [SnPh2(La)] (1), [SnPh2(Lb)] (2), [SnPh2(Lc)] (3), and [SnMe2(Lc)] (4) have been synthesized from the reaction of SnPh2Cl2 and SnMe2Cl2 with these Schiff bases. The synthesized complexes have been characterized by elemental analysis and FT-IR, 1H, 13C, and 119Sn NMR spectroscopy. Spectroscopic data suggest the Schiff bases are completely deprotonated and coordinated tridentate to tin via imine nitrogen and phenolic and enolic oxygen atoms; the coordination number of tin is five. Thermal decomposition of the complexes has been studied by thermogravimetry. The in vitro antibacterial activities of the Schiff bases and their complexes have been evaluated against Gram-positive (Bacillus subtilis and Staphylococcus aureus) and Gram-negative (Escherichia coli and Pseudomonas aeruginosa) bacteria. H2La, H2Lc, and all complexes exhibited good activities and have potential as drugs.  相似文献   

18.
The reaction of cyclopentylamine with 2-hydroxy-1-naphthaldehyde and 5-nitrosalicylaldehyde, respectively, in methanol affords two new Schiff bases, 1-(cyclopentyliminomethyl)naphthalen-2-ol (HL1) and 4-nitro-2-(cyclopentyliminomethyl)phenol (HL2). Two new zinc(II) complexes, [Zn(L1)2] (I) and [Zn(L2)2] (II), derived from the Schiff bases, have been prepared and characterized by single-crystal X-ray diffraction, FT-IR, and elemental analysis. Complex I crystallizes in the monoclinic space group P21/c with a = 17.834(4), b = 14.738(3), c = 9.868(2) Å, β = 91.20(3)°, V = 2593.1(9) Å3, Z = 4. Complex II crystallizes in the triclinic space group P \(\bar 1\) with a = 10.206(1), b = 10.502(1), c = 12.554(1) Å, α = 66.771(2)°, β = 78.133(2)°, γ = 76.292(2)°, V = 1191.8(1) Å3, Z = 2. The Zn atom in each complex is coordinated by two N and two O atoms from two Schiff base ligands, forming a tetrahedral geometry. The Schiff bases and the complexes were assayed for antibacterial activities.  相似文献   

19.
Two series of zinc(II) complexes of two Schiff bases (H2L1 and H2L2) formulated as [Zn(HL1/HL2)]ClO4 (1a and 1b) and [Zn(L1/L2)] (2a and 2b), where H2L1 = 1,8-bis(salicylideneamino)-3,6-dithiaoctane and H2L2 = 1,9-bis(salicylideneamino)-3,7-dithianonane, have been prepared and isolated in pure form by changing the chemical environment. Elemental, spectral, and other physicochemical results characterize the complexes. A single crystal X-ray diffraction study confirms the structure of [Zn(HL1)]ClO4 (1a). In 1a, zinc(II) has a distorted octahedral environment with a ZnO2N2S2 chromophore.  相似文献   

20.
A new series of Ni(II) complexes, [Ni(L1)2] (1), [Ni(L2)2] (2), [Ni(L3)2] (3), and [Ni(L4)2] (4), were synthesized at ambient temperature. The bidentate Schiff base ligands HL1?4 have been obtained by the condensation reaction of 2-hydroxybenzaldehyde, 5-bromo-2-hydroxybenzaldehyde, 3-methoxy-2-hydroxy-benzaldehyde, and 4-methoxy-2-hydroxy-benzaldehyde, respectively, with 2-methoxyethylamine. The newly synthesized complexes were characterized by elemental analyses, FT-IR and UV–vis spectroscopy. The crystal structures of mononuclear Ni(II) complexes 2 and 3 were determined by the single-crystal X-ray diffraction technique. Electrochemical properties of the complexes were investigated in acetonitrile. The antioxidant properties of the Schiff base ligands and complexes were evaluated by two in vitro tests, DPPH radical scavenging and reducing power. The compounds were screened for their in vitro anticancer potential using gastric cancer cell lines by MTT assay. All ligands and complexes showed considerable cytotoxic activity against cancer cell lines (IC50 = 0.2516–5.468 μg·mL?1). The most promising result was achieved for complex 1 with the best IC50 value of 0.2516 μg·mL?1. It was found that the proliferation rate of MKN-45 cells decreased after treatment with the complexes in a dose-dependent way.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号