首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary. The crosslinking behavior of MFRs (melamine formaldehyde resins) in the presence of wood was investigated. The influence of various factors (wood content, resin structure, etc.) on the crosslinking temperature of the resins was examined using DMTA and DSC/TGA. Fully methylated MFRs turned out to be more stable in the presence of wood than partially methylated MFRs. A dependence of the crosslinking temperature on the wood content was found. Model reactions with wood components demonstrated, that cellulose, hemicelluloses, and lignin affect the crosslinking temperature to different extends, whereas hemicelluloses (xylan) showed the strongest effect. Solvents, especially water, led to a further decrease of the crosslinking temperature of wood/MFR compounds.  相似文献   

2.
The crosslinking behavior of MFRs (melamine formaldehyde resins) in the presence of wood was investigated. The influence of various factors (wood content, resin structure, etc.) on the crosslinking temperature of the resins was examined using DMTA and DSC/TGA. Fully methylated MFRs turned out to be more stable in the presence of wood than partially methylated MFRs. A dependence of the crosslinking temperature on the wood content was found. Model reactions with wood components demonstrated, that cellulose, hemicelluloses, and lignin affect the crosslinking temperature to different extends, whereas hemicelluloses (xylan) showed the strongest effect. Solvents, especially water, led to a further decrease of the crosslinking temperature of wood/MFR compounds.  相似文献   

3.
It has previously been shown that the improved digestibility of dilute acid pretreated corn stover is at least partially due to the removal of xylan and the consequent increase in accessibility of the cellulose to cellobiohydrolase enzymes. We now report on the impact that lignin removal has on the accessibility and digestibility of dilute acid pretreated corn stover. Samples of corn stover were subjected to dilute sulfuric acid pretreatment with and without simultaneous (partial) lignin removal. In addition, some samples were completely delignified after the pretreatment step using acidified sodium chlorite. The accessibility and digestibility of the samples were tested using a fluorescence-labeled cellobiohydrolase (Trichoderma reesei Cel7A) purified from a commercial cellulase preparation. Partial delignification of corn stover during dilute acid pretreatment was shown to improve cellulose digestibility by T. reesei Cel7A; however, decreasing the lignin content below 5% (g g−1) by treatment with acidified sodium chlorite resulted in a dramatic reduction in cellulose digestibility. Importantly, this effect was found to be enhanced in samples with lower xylan contents suggesting that the near complete removal of xylan and lignin may cause aggregation of the cellulose microfibrils resulting in decreased cellulase accessibility.  相似文献   

4.
The feasibility of using DRIFT (diffuse reflectance infrared Fourier transform) spectroscopy combined with a multivariate analysis method (a PLS (projection to latent structures), regression) for predicting the distribution of the main organic constituents (cellulose, glucomannan, xylan, lignin, and extractives) within the Scots pine (Pinus sylvestris) stemwood was examined. PLS calibrations were carried out to establish a mathematical correlation between the data sets of conventional (“wet-chemistry-based”) wood analysis and the DRIFT spectra of the corresponding wood samples. Based on this approach, different surface maps on variations in the content of the main organic constituents within the stemwood matrix were shown.  相似文献   

5.
Steam-heating of aspen wood chips improved the enzymatic digestibility of the cellulose. Scaling up the reaction vessel from 2 to 60 L had virtually no influence on the chemical composition and the accessibility of the lignocellulosic substrate. Over 85% of the cellulose could be hydrolyzed to glucose when an 8% substrate concentration was used. The residual content of alkali-insoluble lignin appeared to control the digestibility of the cellulose. Increased delignification either by prolonged steaming, oxidative posttreatment, or SO2 catalysis improved the accessibility of the cellulose. The use of SO2 as a catalyst also increased the recovery yield of the wood after steam-heating, with more than 70% of the original xylan recovered as monomeric xylose. Conversion yields of above 90% were achieved at low levels of filter paper activity after a relatively short incubation time. Removal of alkali-soluble lignin did not influence digestibility when the enzyme concentration was based on the cellulose content of the substrates.  相似文献   

6.
A crude xylan isolate obtained by prehydrolysis and mild alkaline extraction from birch wood chips (Betula pendula), and a carefully delignified xylan fraction from the same source, were examined by dynamic light scattering (DLS) and cryogenic transmission electron microscopy (cryo-TEM) with regard to their propensity to self-assemble in water into insoluble aggregates. The delignification involved the extraction with chloroform of a crude xylan solution in a pyridine/acetic acid/water mixture. It resulted in a purified xylan fraction in a yield of 23% in which 75 and 90% of the lignin had been removed as indicated by Klason and UV-determination, respectively. It was found that both xylan fractions formed agglomerates by self-assembly in water. However, DLS and cryo-TEM indicated that the aggregates were larger in size (90 vs. 40 nm) and greater in mass when more lignin was present. The addition of an alkaline solution of isolated lignin (obtained by steam explosion) to increasing concentrations of a delignified xylan revealed increasing turbidity. Our conclusion is that lignin induces agglomeration of xylan in aqueous solutions, but xylan concentration plays an active role in the aggregation phenomena. An agglomeration mechanism for lignin rich xylan fractions is proposed.  相似文献   

7.
Time profiles of evolution rates of gas and tar in steam gasification of model biomass samples were examined using a continuous cross-flow moving bed type differential reactor to elucidate the interaction of the major biomass components (cellulose, xylan, lignin) during gas and tar evolution. Two types of model biomass samples (sample A: mixture of cellulose (65 wt%) and lignin (35 wt%); sample B: mixture of cellulose (50 wt%), xylan (23 wt%), and lignin (27 wt%)) were used for the experiment. In steam gasification of sample A, the evolutions of water-soluble tar and gaseous products (CO, H2, CH4 and C2H4) are significantly suppressed by the interaction between cellulose and lignin. The primary (initial) decomposition of lignin is hindered by the interaction with pyrolysate of cellulose. Then, the CO2 evolution appreciably enhanced and the evolution of water-soluble tar delays. These results may imply that the volatilization of water-soluble tar derived from cellulose is suppressed by lignin and then the decomposition of char derived from polymerized saccharides and lignin takes place, emitting mainly CO2. From the results using sample B, it was found that the addition of xylan greatly enhances the evolutions of gases (CO2, CO, CH4 and H2) and accelerates the evolution of water-soluble tar and CO2, implying that the enhancement of decomposition of water-soluble tar into gases and/or xylan decomposes into gases without significant interaction with cellulose or lignin. In addition, yields of the major tar components (levoglucosan, furfural and 5-methylfurfural) were measured using HPLC. It was observed that the interaction among cellulose, xylan and lignin suppresses the evolution of levoglucosan and significantly increases the evolution rate of 5-methylfurfural. There is an insignificant influence of interaction among cellulose, xylan and lignin for furfural evolution.  相似文献   

8.
The mechanical and physical properties of wood fibres are dependent on the organisation of their constituent polymers (cellulose, hemicellulose and lignin). Fourier Transform Infrared (FTIR) microscopy was used to examine the anisotropy of the main wood polymers in isolated cell wall fragments from branches of maple and Serbian spruce. Polarised FTIR measurements indicated an anisotropy, i.e. orientation of the cellulose microfibrils that was more or less parallel to the longitudinal axis of the cell wall. The hemicelluloses, glucomannan and xylan appeared to have a close link to the orientation of the cellulose and, thus, an orientation more parallel to the axis of the cell wall. An important result is that, in both maple and spruce samples, lignin was found to be organised in a parallel way in relation to the longitudinal cell wall axis, as well as to the cellulose. The results show that, despite the different lignin precursors and the different types of hemicelluloses in these two kinds of wood, lignin has a similar orientation, when it comes to the longitudinal axis of the cell wall.  相似文献   

9.
Py–GC–MS was used to examine the components of vapor from rapid pyrolysis of larch wood and its model components, i.e. example cellulose, xylan, and lignin, and their mixture in accordance with the proportion of the components in larch wood. In this study, a total of 97 compounds in 12 categories were identified in the pyrolysis vapor and were compared. It was found that the most abundant chemical species in these five types of pyrolysis vapor were different. Saccharides and ketones were the major compounds in the pyrolysis vapor from microcrystalline cellulose and xylan, respectively, whereas the most abundant compounds in the pyrolysis vapor from alkaline lignin were sulfur compounds and phenols. Saccharides and ketones were major components of the pyrolysis vapor from MMC, whereas the main compounds in the pyrolysis vapor from larch wood were ketones, phenols, aldehydes, and saccharides. The different composition of the pyrolysis vapor from larch wood and its model mixture was explained on the basis of their different structural frameworks and the non-structural components of larch wood. It was also concluded that the presence of non-structural components, including extractives and ash, affect the pyrolysis reaction of larch wood. Nevertheless, the detailed patterns of this process must be further studied.  相似文献   

10.
Cellulose acetylation has been reported as a side reaction of cellulose treatment with the ionic liquid 1-ethyl-3-methylimidazolium acetate ([EMIm][OAc]) (Karatzos et al. in Cellulose 19:307–312, 2012) and other 1,3-dialkylimidazolium acetate ionic liquids. 1-Acetylimidazole (AcIm), an [EMIm][OAc] impurity, has been found to be the actual acetylating agent (Zweckmair et al. in Cellulose 22:3583–3596, 2015), and the degree of acetylation was relatively low, below a DS of approx. 0.1%. Higher degrees of cellulose acetylation (DS > 10%) have been observed when the entire wood was mixed with [EMIm][OAc] instead of cellulosic pulp only (Abushammala et al. in Carbohydr Polym 134:609–616, 2015). In this paper, we explore the impact of wood constituents, mainly lignin, on cellulose acetylation using AcIm. The results demonstrate that lignin itself can be readily acetylated upon mixing with AcIm, and—noteworthy—that lignin presence significantly accelerates cellulose acetylation. The initial rate of cellulose acetylation by AcIm increased from 1.8 to 4.7%/h when only 1% of lignin, based on cellulose mass, was added. A mechanistic study employing cellulose and lignin model compounds showed lignin to be more susceptible to acetylation than cellulose and to act as an intermediate acetyl group source for further cellulose acetylation in a catalytic scenario.  相似文献   

11.
The present work describes the delignification of wheat straw through an environmentally friendly process resulting from sequential application of autohydrolysis and organosolv processes. Wheat straw autohydrolysis was performed at 180°C during 30 min with a liquid–solid ratio of 10 (v/w); under these conditions, a solubilization of 44% of the original xylan, with 78% of sugars as xylooligosaccharides of the sum of sugars solubilized in the autohydrolysis liquors generated by the hemicellulose fraction hydrolysis. The corresponding solid fraction enrichment with 63.7% of glucan and 7.55% of residual xylan was treated with a 40% ethanol and 0.1% NaOH aqueous solution at a liquid–solid ratio of 10 (v/w), with the best results obtained at 180°C during 20 min. The highest lignin recovery, measured by acid precipitation of the extracted lignin, was 3.25 g/100 ml. The lignin obtained by precipitation was characterized by FTIR, and the crystallinity indexes from the native cellulose, the cellulose recovered after autohydrolysis, and the cellulose obtained after applying the organosolv process were obtained by X-ray diffraction, returning values of 21.32%, 55.17%, and 53.59%, respectively. Visualization of the fibers was done for all the processing steps using scanning electron microscopy.  相似文献   

12.
The X‐ray photoelectron spectroscopy (XPS) study of black cherry (Prunus serotina), red oak (Quercus rubra), and red pine (Pinus resinosa) wood samples extracted with ethanol, ethanol—toluene, and water was conducted to evaluate chemical modifications occurring on the wood surface due to wood extractives, and derive possible implications for wood utilization. Results obtained indicate an increase in the O/C values following extraction treatments due to the partial removal of high carbon content extractives. The C 1s peaks indicated a decrease in the area of the C1 peak, known to originate from lignin and extractives following extraction. At the same time, a rise in the C2 peak (mainly originating from cellulose and hemicelluloses) was observed, indicating that more cellulose was exposed on the wood surface following extraction. The O 1s peaks showed an increase in the O1 peak originating from cellulose, therefore confirming the trend observed for C 1s peaks. These results suggest that extracted wood is more wettable because of the increased exposure of high‐oxygen‐content cellulose molecules, known to be more hydrophilic than lignin and high carbon content extractives. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

13.
The white-rot fungi,Cerrena unicolor, Ganoderma applanatum, G. tsugae,Ischnoderma resinosum, andPerenniporia medullapanis, caused two distinct types of decay. Large areas of decayed wood were selectively delignified and a typical white-rot causing a simultaneous removal of all cell wall components was present. Preferential lignin degradation was intermittently dispersed throughout the decayed wood. Scanning and transmission electron microscopy were used to identify the micromorphological and ultrastructural changes that occurred in the cells during degradation. In delignified areas the compound middle lamella was extensively degraded without substantial alteration of the secondary wall. The S2 layer of the secondary wall was least affected. The loss of middle lamellae resulted in extensive defibration of the cells. Sulfuric acid lignin determinations indicated that 95–98% of the lignin was removed. Wood sugar analyses using high pressure liquid chromatography demonstrated that hemicelluloses were removed in preference to cellulose when lignin was degraded. The results suggest that a highly diffusible ligninolytic system was responsible for the selective degradation of the wood. In simultaneously white-rotted wood, all cell wall layers were progressively removed from the cell lumen toward the middle lamella, causing erosion troughs or holes to form. Large voids filled with fungal mycelia resulted from a coalition of degraded areas. Chemical analyses of white-rotted wood indicated lignin, cellulose, and hemicellulose were removed in approximately the same amounts. Degradation was confined to areas around fungal hyphae.  相似文献   

14.
The use of Fourier-transform Raman spectroscopy for characterising lignocellulosics has increased significantly over the last twenty years. Here, an FT-Raman spectroscopic study of changes in the chemistry of waterlogged archaeological wood of Pinus sp. and Quercus sp. from a prehistoric assemblage recovered from northern Greece is presented. FT-Raman spectral features of biodeteriorated wood were associated with the depletion of lignin and/or carbohydrate polymers at various stages of deterioration. Spectra from the archaeological wood are presented alongside spectra of sound wood of the same taxa. A comparison of the relative changes in intensities of spectral bands associated with lignin and carbohydrates resulting from decay clearly indicated extensive deterioration of both the softwood and hardwood samples and the carbohydrates appear to be more deteriorated than the lignin. The biodeterioration of the archaeological timbers followed a pattern of initial preferential loss of carbohydrates causing significant loss of cellulose and hemicellulose, followed by the degradation of lignin.  相似文献   

15.
Acetobacter xylinum was cultured in Schramm–Hestrin medium containing pectin (pectin medium), xylan (xylan medium), or glucomannan (mannan medium). X-ray diffractometry revealed that xylan and glucomannan affected the size of the cellulose crystals and their d-spacing values. Solid-state cross polarization magic angle spinning carbon-13 nuclear magnetic resonance spectroscopy indicated that the ratio of cellulose I was reduced by the addition of polysaccharides. These effects were more remarkable on the cellulose in the mannan medium than that in the xylan medium, and were scarcely observed in the pectin medium. Electron diffraction analysis revealed that these effects on hemicelluloses along cellulose microfibrils are continuous in the mannan medium and discontinuous in the xylan medium. These findings suggest that the uronic acid in the polysaccharides prevents interactions with cellulose leading to alterations of the structure of the cellulose crystal.  相似文献   

16.
The pyrolysis process of pine wood, a promising biofuel feedstock, has been studied with tunable synchrotron vacuum ultraviolet photoionization mass spectrometry. The mass spectra at different photon energies and temperatures as well as time-dependent profiles of several selected species during pine wood pyrolysis process were measured. Based on the relative contents of three lignin subunits, the data indicate that pine wood is typical of softwood. As pyrolysis temperature increased from 300 to 700 °C, some more details of pyrolysis chemistry were observed, including the decrease of oxygen content in high molecular weight species, the observation of high molecular weight products from cellulose chain and lignin polymer, and potential pyrolysis mechanisms for some key species. The formation of polycyclic aromatic hydrocarbons (PAHs) was also observed, as well as three series of pyrolysis products derived from PAHs with mass difference of 14 amu. The time-dependent profiles show that the earliest products are formed from lignin, followed by hemicellulose products, and then species from cellulose.
Figure
The pyrolysis study of pine wood based on synchrotron vacuum ultraviolet photoionization mass spectrometry.  相似文献   

17.
生物质三组分热裂解行为的对比研究   总被引:33,自引:9,他引:33  
在热天平上对比研究了生物质中的纤维素、半纤维素和木质素三种主要组分的热失重规律。结果表明,作为半纤维素模型化合物的木聚糖热稳定性差,在217℃~390℃发生明显分解;纤维素热裂解起始温度最高,且主要失重发生在较窄温度区域,固体残留物仅为6.5%;木质素表现出较宽的失重温度区域,最终固体残留物高达42%。在红外辐射机理试验台上对比研究了三组分热裂解产物随温度的变化规律。三组分热裂解生物油产量随温度变化先升后降。纤维素生物油产量在峰值上最高,但纤维素生物油热稳定性差,高温时挥发分的二次分解最明显;木聚糖和木质素生物油产量较低,表现出较好的热稳定性。三组分热裂解焦炭产量随温度升高而降低,最终纤维素热裂解焦炭产量为1.5%,而木聚糖和木质素分别为22%和26%。三组分热裂解气体产物随温度升高而增长,但在气体组成分布上因三组分的结构上的差异而不同。  相似文献   

18.
Fourier transform infrared (FTIR) spectroscopy was used to examine lignin modification in Pinus sylvestris L. (Scots pine) and Fagus sylvatica L. (beech) decayed to different weight losses by the brown‐rot fungus Coniophora puteana. Samples of different weight losses, ranging from 3 to 64% for beech and 15 to 62% for pine, were analyzed along with undecayed controls. The ratios of the heights of the lignin/carbohydrate FTIR peaks were determined, and the lignin contents of the blocks were measured with the acetyl bromide method. The ratios of the reference peaks for lignin against polysaccharide (i.e., cellulose and hemicellulose) peaks were compared with the lignin content of the wood determined by the acetyl bromide method. A good correlation was obtained for ratios of some of the lignin/carbohydrate reference peaks (lignin peaks at 1505 and 1330 cm?1 for beech and at 1511 and 1225 cm?1 for pine against polysaccharide peaks at 1734, 1375, and 1158 cm?1) against the lignin content for both wood species decayed to different levels. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2340–2346, 2004  相似文献   

19.
Hot water and aqueous ammonia fractionation of corn stover were used to separate hemicellulose and lignin and improve enzymatic digestibility of cellulose. A two-stage approach was used: The first stage was designed to recover soluble lignin using aqueous ammonia at low temperature, while the second stage was designed to recover xylan using hot water at high temperature. Specifically, the first stage employed a batch reaction using 15 wt.% ammonia at 60 °C, in a 1:10 solid:liquid ratio for 8 h, while the second stage employed a percolation reaction using hot water, 190–210 °C, at a 20 ml/min flow rate for 10 min. After fractionation, the remaining solids were nearly pure cellulose. The two-stage fractionation process achieved 68% lignin purity with 47% lignin recovery in the first stage, and 78% xylan purity, with 65% xylan recovery in the second stage. Two-stage treatment enhanced the enzymatic hydrolysis of remaining cellulose to 96% with 15 FPU/g of glucan using commercial cellulase enzymes. Enzyme hydrolyses were nearly completed within 12–24 h with the remaining solids fraction.  相似文献   

20.
Anaerobic erosion bacteria can slowly degrade waterlogged wood, causing a loss of cellulose and hemicellulose. During this process, lignin can also be altered. For this reason, the chemical characterization of waterlogged archaeological wood is crucial for both the elucidation of the degradation processes and also the development of consolidation and conservation procedures.The complex structure of wood makes it practically impossible to dissolve wood in its native form in conventional molecular solvents. Ionic liquids can provide a homogeneous reaction medium for wood-based lignocellulosic materials. Highly substituted lignocellulosic esters and phosphite esters can be obtained under mild conditions by reacting pulverized wood dissolved in ionic liquid with either acyl chlorides or dioxaphospholanes in the presence of pyridine. As a result, the functionalized wood develops an enhanced solubility in molecular solvents, allowing for a complete characterization by means of spectroscopic and chromatographic techniques.In this study, archaeological woods and reference sound woods of the same taxa (Quercus and Arbutus unedo), along with the corresponding extracted lignin, were fully characterized by means of phosphorus NMR spectroscopy, two dimensional NMR spectroscopy and GPC analysis. The samples were collected from the Site of the Ancient Ships of San Rossore (Pisa, Italy), where many shipwrecks dating from 2nd century BC to 5th century AD have been discovered.The results highlighted a deeper and faster depolymerization of the polysaccharide matrix against a limited degradation of the lignin fraction. The use of innovative solvent system as the ionic liquid [amim]Cl enables to highlight chemical and morphologic changes in wood composition avoiding further degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号