首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The oxomolybdenum(VI) complex [MoOCl(L)] with a tetradentate glycine bisphenol ligand (H3L) was prepared by reaction of [MoO2Cl2(DMSO)2] with a ligand precursor in hot toluene. The product was isolated in moderate yield as separable cis and trans isomers along with the third minor component, [MoO2(HL)]. The solid-state structure of trans-[MoOCl(L)] was determined by X-ray diffraction. The ligand has tetradentate coordination through three oxygens and one nitrogen, which is located trans to the terminal oxo whereas the sixth coordination site is occupied by a chloride. Both cis and trans isomers of [MoOCl(L)] are active catalysts for epoxidation of cis-cyclooctene and sulfoxidation of tolyl methyl sulfide. The cis isomer gave higher activity in epoxidation and sulfoxidation reactions at room temperature than the trans isomer but they performed identically at 50?°C.  相似文献   

2.
Two molybdenum (VI) hydrogen-bonded network polymers [MoO2F4]·(4,4′-H2bpd)(H2O)2 (1) and [MoO2Cl3(H2O)]·(4,4′-H2bpd)Cl (2) (bpd = bipiperidine) have been synthesized and examined as catalysts for epoxidation of cyclooctene. Complexes of the Mo compounds containing the bpd ligand are prepared and characterized by infrared spectroscopy, thermogravimetric and elemental analyses. They have been structurally characterized by single crystal X-ray diffraction analysis. The structures of both the complexes are shown to be comprised of molybdenum and two protonated N-ligand cations that have resulted in a cross-linked hydrogen-bonded network structure. These complexes are applicable as catalysts for the cis-cyclooctene epoxidation reactions with hydrogen peroxide as a source of oxygen and NaHCO3 as a cocatalyst. It has been observed that the formation of the oxidant peroxymonocarbonate ion, HCO4 by hydrogen peroxide and bicarbonate enhances the epoxidation reaction. Both the complexes have exhibited a good activity and a very high selectivity for the formation of cyclooctene oxide. An erratum to this article can be found at  相似文献   

3.
《Polyhedron》1987,6(8):1635-1637
The interaction of N,N′-ethylenebis(salicylideneimine), H2salen, with ammonium molybdate yielded the molybdenum(VI) complex MoO2(salen) with the cis-dioxostructure as inferred from IR spectral studies. The 1H NMR chemical shifts of azomethine protons in the free ligand and the complex are 8.14 and 8.39 δ, respectively, suggesting the bonding of the azomethine nitrogen to MoO2 group. The thermal decomposition behaviour of the complex is discussed.  相似文献   

4.
Summary cis-Dioxo(N-salicylidene-2-aminophenolato) (imidazole)-molybdenum(VI) complexes, [MoO2(Sap)(Im)], (Im = imidazole or its derivatives, sap = salicylidene-2-aminophenolate) are prepared by the ligand substitution of [MoO2(Sap)(EtOH)] with a unidentate imidazole ligand. All complexes are red or yellow, diamagnetic, non-electrolytes and possess an octahedral stereochemistry. The i.r. spectra shows two bands attributable tocis-MoO2 stretches in addition to the vibrations of the Schiff base ligand and the imidazole derivatives. Thermal degradation of the complexes result in successive loss of imidazole ligand followed by the Schiff base, with ultimate formation of MoO3 atca. 500 °C.  相似文献   

5.
Mixed-chelate complexes of ruthenium have been synthesized using tridentate Schiff-base ligands (TDLs) derived from condensation of 2-aminophenol or 2-aminobenzoic acid with aldehydes (salicyldehyde, 2-pyridinecarboxaldehyde), and tmeda (tetramethylethylenediamine). [RuIII(hpsd)(tmeda)(H2O)]+ (1), [RuIII(hppc)(tmeda)(H2O)]2+ (2), [RuIII(cpsd)(tmeda)(H2O)]+ (3) and [RuIII(cppc)(tmeda)(H2O)]2+ (4) complexes (where hpsd2− = N-(hydroxyphenyl)salicylaldiminato); hppc = N-(2-hydroxyphenylpyridine-2-carboxaldiminato); cpsd2− = (N-(2-carboxyphenyl)salicylaldiminato); cppc = N-2-carboxyphenylpyridine-2-carboxaldiminato) were characterized by microanalysis, spectral (IR and UV–vis), conductance, magnetic moment and electrochemical studies. Complexes 14 catalyzed the epoxidation of cyclohexene, styrene, 4-chlorostyrene, 4-methylstyrene, 4-methoxystyrene, 4-nitrostyrene, cis- and trans-stilbenes effectively at ambient temperature using tert-butylhydroperoxide (t-BuOOH) as terminal oxidant. On the basis of Hammett correlation (log krel vs. σ+) and product analysis, a mechanism involving intermediacy of a [Ru–O–OBut] radicaloid species is proposed for the catalytic epoxidation process.  相似文献   

6.
The reaction of MoO2Cl2(OPMePh2)2 with t-butylhydroperoxide (TBHP) in the presence of cis-cyclooctene yields the tetrameric complex Mo4O6(O2)23-O)2{(μ2-O,μ3-OC8H14}2(OPMePh2)2, (1). Additionally in the absence of cis-cyclooctene MoO(O2)Cl2(OPMePh2)2, MoO(O2)2(H2O)(OPMePh2), (2), and two novel yellow compounds can be isolated depending on the quantity of TBHP used and the reaction conditions. Both the starting material MoO2Cl2(OPMePh2)2 and tetramer 1 are capable of accomplishing the epoxidation of cis-cyclooctene as catalysts. The single crystal X-ray determined structures of complexes 1 and 2 are reported.Dedicated to Professor F. A. “Chief” Cotton on the occasion of his 75th birthday  相似文献   

7.
[TiCl2(salen)] (1) reacts with AlMe3 (1:2) to give the heterometallic Ti(III) and Ti(IV) complexes [Ti{(μ-Cl)(AlMe2)}{(μ-Cl)(AlMe2X)}(salen)] (X=Me or Cl) (2) and [TiMe{(μ-Cl)(AlCl2Me)}(salen)] (3). Addition of diethyl ether to 3 affords [Ti(Me)Cl(salen)] (4). The analogous reaction of [TiBr2(salen)] (5) gives the crystallographically characterised [Ti{(μ-Br)(AlMe2)}{(μ-Br)(AlMe2X)}(salen)] (X=Me or Br) (6) and [Ti(Me)Br(salen)] (7) in a single step, whilst the comparable reaction of [TiCl2{(3-MeO)2salen}] (8) with AlMe3 yields [Ti(Me)Cl{(3-MeO)2salen}] (9) with no evidence of titanium(III) species. Reactivity of both halide and methyl groups of 4 has been probed using magnesium reduction, SbCl5 and AgBF4 halide abstraction and SO2 insertion reactions. Hydrolysis of [Ti(Me)X(L)] complexes affords μ-oxo species [TiX(L)]2(μ-O) [X=Cl, L=salen (13); X=Br, L=salen (14); X=Cl, L=(3-MeO)2salen (15)].  相似文献   

8.
A series of dioxomolybdenum(VI) complexes with similar hydrazone ligands have been prepared, specifically [MoO2L1(MeOH)] (1), [MoO2L2(MeOH)] (2) and [MoO2L3(MeOH)] (3), where L1, L2 and L3 are the dianionic forms of 2-chloro-N′-(2-hydroxybenzylidene)benzohydrazide, 2-chloro-N′-(2-hydroxy-5-methylbenzylidene)benzohydrazide and N′-(3-bromo-5-chloro-2-hydroxybenzylidene)-2-chlorobenzohydrazide, respectively. The complexes were characterized by physicochemical and spectroscopic methods and also by single-crystal X-ray determination. The hydrazone ligands coordinate to the Mo atoms through their phenolate O, imine N and enolic O atoms. The Mo atoms are six-coordinated in octahedral geometries. The complexes show high catalytic activities and selectivities in the epoxidation of cyclohexene with tert-butylhydroperoxide as primary oxidant.  相似文献   

9.
The reaction of cis-[RuCl2(P–P)(N–N)] type complexes (P–P = 1,4-bis(diphenylphosphino)butane or (1,1′-diphenylphosphino)ferrocene; N–N = 2,2′-bipyridine or 1,10-phenantroline) with monodentate ligands (L), such as 4-methylpyridine, 4-phenylpyridine and benzonitrile forms [RuCl(L)(P–P)(N–N)]+ species. Upon characterization of the isolated compounds by elemental analysis, 31P{1H} NMR and X-ray crystallography it was found out that the type of the L ligand determines its position in relation to the phosphorus atom. While pyridine derivatives like 4-methylpyridine and 4-phenylpyridine coordinate trans to the phosphorus atom, the benzonitrile ligand (bzCN), a good π acceptor, coordinates trans to the nitrogen atom. A 31P{1H} NMR experiment following the reaction of the precursor cis-[RuCl2(dppb)(phen)] with the benzonitrile ligand shows that the final position of the entering ligand in the complex is better defined as a consequence of the competitive effect between the phosphorus atom and the cyano-group from the benzonitrile moiety and not by the trans effect. In this case, the benzonitrile group is stabilized trans to one of the nitrogen atoms of the N–N ligand. A differential pulse voltammetry experiment confirms this statement. In both experiments the [RuCl(bzCN)(dppb)(phen)]PF6 species with the bzCN ligand positioned trans to a phosphorus atom of the dppb ligand was detected as an intermediate complex.  相似文献   

10.
A new series of cycloplatinated (II) complexes with general formulas of [Pt (bhq)(N3)(P)] [bhq = deprotonated 7,8‐benzo[h]quinoline, P = triphenyl phosphine (PPh3) and methyldiphenyl phosphine], [Pt (bhq)(P^P)]N3 [P^P = 1,1‐bis (diphenylphosphino)methane (dppm) and 1,2‐bis (diphenylphosphino)ethane] and [Pt2(bhq)2(μ‐P^P)(N3)2] [P^P = dppm and 1,2‐bis (diphenylphosphino)acetylene] is reported in this investigation. A combination of azide (N3?) and phosphine (monodentate and bidentate) was used as ancillary ligands to study their influences on the chromophoric cyclometalated ligand. All complexes were characterized by nuclear magnetic resonance spectroscopy. To confirm the presence of the N3? ligand directly connected to the platinum center, complex [Pt (bhq)(N3)(PPh3)] was further characterized by single‐crystal X‐ray crystallography. The photophysical properties of the new products were studied by UV–Vis spectroscopy in CH2Cl2 and photoluminescence spectroscopy in solid state (298 or 77 K) and in solution (77 K). Using density functional theory calculations, it was proved that, in addition to intraligand charge‐transfer (ILCT) and metal‐to‐ligand charge‐transfer (MLCT) transitions, the L′LCT (L′ = N3, L = C^N) electronic transition has a remarkable contribution in low energy bands of the absorption spectra (for complexes [Pt (bhq)(N3)(P)] and [Pt2(bhq)2(μ‐P^P)(N3)2]). It is indicative of the determining role of the N3? ligand in electronic transitions of these complexes, specifically in the low energy region. In this regard, the photoluminescence studies indicated that the emissions in such complexes originate from a mixed 3ILCT/3MLCT (intramolecular) and also from aggregations (intermolecular).  相似文献   

11.
Nickel(II), palladium(II), and platinum(II) complexes of 2-(3-mesitylimidazolylidenyl)pyrimidine (L), [Ni2(μ-Cl)2(L)4][Ag2Cl4] (3), [Ni2(μ-I)2(L)4][NiI(L)2(CH3CN)]2[Ag4I8] (4), [PdCl2(L)] (5), [PdI2(L)] (6), and [PtCl(L)2][AgCl2] (7) have been obtained from the carbene transfer reactions of [Ag(L)Cl] (2). These complexes have been fully characterized by spectroscopic methods and single-crystal X-ray structure analyses. The mono(carbene)palladium and bis(carbene)platinum complexes display normal square–planar structures. Nickel complexes 3 and 4 are rare examples of paramagnetic nickel(II) complexes of N-heterocyclic carbenes having octahedral geometry.  相似文献   

12.
《印度化学会志》2021,98(2):100006
The new cis-dioxomolybdenum (VI) complexes [MoO2(L2)(H2O)] (2) and [MoO2(L3)(H2O)] (3) containing the tridentate hydrazone-based ligands (H2L2 = N'-(3,5-di-tert-butyl-2-hydroxybenzylidene)-4-methylbenzohydrazide and H2L3 = N'-(2-hydroxybenzylidene)-2-(hydroxyimino)propanehydrazide) have been synthesized and characterized via IR, 1H and 13C NMR spectroscopy, mass spectrometry, and single crystal X-ray diffraction analysis. The catalytic activities of complexes 2 and 3, and the analogous known complex [MoO2(L1)(H2O)] (1) (H2L1 = N'-(2-hydroxybenzylidene)-4-methylbenzohydrazide) have been evaluated for various oxidation reactions, viz. oxygen atom transfer from dimethyl sulfoxide to triphenylphosphine, sulfoxidation of methyl-p-tolylsulfide or epoxidation of different alkenes using tert-butyl hydroperoxide as terminal oxidant. The catalytic activities were found to be comparable for all three complexes, but complexes 1 and 3 showed better catalytic performances than complex 2, which contains a more sterically demanding ligand than the other two complexes.  相似文献   

13.
The synthesis and characterization of a series of cobalt(III) complexes of the general type [Co(N2O2)(L2)]+ are described. The N2O2 Schiff base ligands used are Me-salpn (H2Me-salpn = N,N′-bis(methylsalicylidene)-1,3-propylenediamine) (13) and Me-salbn (H2Me-salbn = N,N′-bis(methylsalicylidene)-1,4-butylenediamine) (45). The two ancillary ligands L include: pyridine (py) 1, 3-metheylpyridine (3-Mepy) 2, 1-methylimidazole (1-MeIm) 3, 4-methylpyridine (4-Mepy) 4 and pyridine (py) 5. These complexes have been characterized by elemental analyses, IR, UV–Vis, and 1H NMR spectroscopy. The crystal structures of trans-[CoIII(Me-salpn)(py)2]PF6, 1, and cis-α-[CoIII(Me-salbn)(4-Mepy)2]BPh4 · 4-Mepy, 4, have been determined by X-ray diffraction. Examination of the solution and crystalline structures revealed that the outer coordination sphere of the complexes exerts a noticeable influence on the inner coordination sphere of the Co(III) ion. The electrochemical reduction of these complexes at a glassy carbon electrode in acetonitrile solution indicates that the first reduction process corresponding to CoIII–CoII is electrochemically irreversible, which is accompanied by the dissociation of the axial (R-py)–cobalt bonds. It has also been observed that the Co(III) state is stabilized with increasing the flexibility of the ligand environment.  相似文献   

14.
The luminescence properties of the tetranuclear bimetallic lanthanide complexes Sm2Eu2 ( 1 ) and Eu2Tb2 ( 2 ), were compared with those of the analogous homometallic complexes [Sm43‐OH)2(salen)2(acac)6(CH3OH)2] · CH3OH ( 3 ) and [Eu43‐OH)2(salen)2(acac)6(CH3OH)2] ( 4 ) [H2salen = N, N′‐ethylenebis(salicylideneimine), Hacac = acetylacetonate]. X‐ray crystallographic analysis reveals that complexes 3 and 4 have planar tetranuclear structures. For the Eu2Tb2 configurational isomer, the TbIII ion in complex 2 mainly serves as a sensitizer. The quantum yields and lifetime measurements for 2 support the premise that Ln/Ln energy transfer occurs in such lanthanide bimetallic complexes, along with the usual ligand‐to‐metal triplet energy pathways. Complexes 3 and 4 exhibit the characteristic metal‐centered emission.  相似文献   

15.
The hybrid compound consisting of molybdenum(salen) [salen = N,N′-bis(salicylidene)ethylnediamine] complex covalently linked to a lacunary Keggin-type polyoxometalate, K8[SiW11O39] (POM), was synthesized and characterized by elemental analysis, FT-IR, 1H NMR and diffuse reflectance UV–Vis spectroscopic methods and BET analysis. The complex, [Mo(O)2(salen)–POM], was studied, for the first time, in the epoxidation of various alkenes with tert-BuOOH and in 1,2-dichloroethane as solvent. This catalyst can catalyze epoxidation of various olefins including non-activated terminal olefins. The effect of the other parameters such as solvent, oxidant and temperature on the epoxidation of cyclooctene was also investigated. The interesting characteristic of this catalyst is that, in addition to being a heterogeneous catalyst, it gives higher yields towards epoxidation of olefins in comparison to the corresponding homogeneous [Mo(O)2(salen)] complex.  相似文献   

16.
Summary The reactions of the tridentate Schiff base ligandN-(2-hydroxyphenyl) salicylideneimine (HOPhsalH) with oxotetrachlororhenate (IV) have been investigated. The complexes (Bu4N)[ReOCl3(HOPhsal)], (Bu4N)[ReOCl2(OPhsal)],cis- [ReOCl(MeOH)(OPhsal)],trans-[ReOCl(MeOH)(OPhsal)] (1), trans-[ReOCl(OH2)(OPhsal)] · Et2O (2), trans-[ReOCl(OH2)(OPhsal)] · Me2CO,cis-[ReOCl(PPh3)(OPhsal)],cis-[ReOCl(PMe2Ph)(OPhsal)](3) have been synthesized and characterized. The crystal structures of(1), (2) and(3) have been solved from three-dimensional x-ray data by Patterson and Fourier methods and refined by least-squares methods to R 0.10 for(1), 0.042 for(2) and 0.059 for(3). In all the three complexes, the ligands surrounding the rhenium atom are at the apices of a distorted octahedron, with the equatorial ONO donor atoms of the tridentate Schiff base bent away from the Ooxo and toward the loosely bound MeOH in(1), H2O in(2) and Cl in(t3). The fourth equatorial substituent is Cl (1 and2) and PMe2Ph(3) and the rhenium atoms lie 0.30–0.37 Å above the best plane through the four equatorial atoms, in the direction of the Ooxo. All interatomic distances and angles are normal.  相似文献   

17.
The complex mer-[RuCl3(dppb)(H2O)] [dppb = 1,4-bis(diphenylphosphino)butane] was used as a precursor in the synthesis of the complexes tc-[RuCl2(CO)2(dppb)], ct-[RuCl2(CO)2(dppb)], cis-[RuCl2(dppb)(Cl-bipy)], [RuCl(2Ac4mT)(dppb)] (2Ac4mT = N(4)-meta-tolyl-2-acetylpyridine thiosemicarbazone ion) and trans-[RuCl2(dppb)(mang)] (mang = mangiferin or 1,3,6,7-tetrahydroxyxanthone-C2-β-D-glucoside) complexes. For the synthesis of RuII complexes, the RuIII atom in mer-[RuCl3(dppb)(H2O)] may be reduced by H2(g), forming the intermediate [Ru2Cl4(dppb)2], or by a ligand (such as H2Ac4mT or mangiferin). The X-ray structures of the cis-[RuCl2(dppb)(Cl-bipy)], tc-[RuCl2(CO)2(dppb)] and [RuCl(2Ac4mT)(dppb)] complexes were determined.  相似文献   

18.
The photochemical, photophysical and photobiological studies of a mixture containing cis-[Ru(H-dcbpy)2(Cl)(NO)] (H2-dcbpy = 4,4′-dicarboxy-2,2′-bipyridine) and Na4[Tb(TsPc)(acac)] (TsPc = tetrasulfonated phthalocyanines; acac = acetylacetone), a system capable of improving photodynamic therapy (PDT), were accomplished. cis-[Ru(H-dcbpy)2(Cl)(NO)] was obtained from cis-[Ru(H2-dcbpy)2Cl2]·2H2O, whereas Na4[Tb(TsPc)(acac)] was obtained by reacting phthalocyanine with terbium acetylacetonate. The UV–Vis spectrum of cis-[Ru(H-dcbpy)2(Cl)(NO)] displays a band in the region of 305 nm (λmax in 0.1 mol L−1 HCl)(π–π*) and a shoulder at 323 nm (MLCT), while the UV–Vis spectrum of Na4[Tb(TsPc)(acac)] presents the typical phthalocyanine bands at 342 nm (Soret λmax in H2O) and 642, 682 (Q bands). The cis-[Ru(H-dcbpy)2(Cl)(NO)] FTIR spectrum displays a band at 1932 cm−1 (Ru–NO+). The cyclic voltammogram of the cis-[Ru(H-dcbpy)2(Cl)(NO)] complex in aqueous solution presented peaks at E = 0.10 V (NO+/0) and E = −0.50 V (NO0/−) versus Ag/AgCl. The NO concentration and 1O2 quantum yield for light irradiation in the λ > 550 nm region were measured as [NO] = 1.21 ± 0.14 μmol L−1 and øOS = 0.41, respectively. The amount of released NO seems to be dependent on oxygen concentration, once the NO concentration measured in aerated condition was 1.51 ± 0.11 μmol L−1 The photochemical pathway of the cis-[Ru(H-dcbpy)2(Cl)(NO)]/Na4[Tb(TsPc)(acac)] mixture could be attributed to a photoinduced electron transfer process. The cytotoxic assays of cis-[Ru(H-dcbpy-)2(Cl)(NO)] and of the mixture carried out with B16F10 cells show a decrease in cell viability to 80% in the dark and to 20% under light irradiation. Our results document that the simultaneous production of NO and 1O2 could improve PDT and be useful in cancer treatment.  相似文献   

19.
Based on the ligand dppz (dppz = dipyrido-[3,2-a:2′,3′-c]phenazine), a new ligand pbtp (pbtp = 4,5,9,11,14-pentaaza-benzo[b]triphenylene) and its polypyridyl ruthenium(II) complexes [Ru(phen)2(pbtp)]2+ (1) (phen = 1,10-phenanthroline and [Ru(bpy)2(pbtp)]2+ (2) (bpy = 2,2′-bipyridine) have been synthesized and characterized by elemental analysis, ES-MS and 1H NMR spectroscopy. The DNA-binding of these complexes were investigated by spectroscopic methods and viscosity measurements. The experimental results indicate that both complexes 1 and 2 bind to CT-DNA in classical intercalation mode, and can enantioselectively interact with CT-DNA. It is interesting to note that the pbtp ruthenium(II) complexes, in contrast to the analogous dppz complexes, do not show fluorescent behavior when intercalated into DNA. When irradiated at 365 nm, both complexes promote the photocleavage of pBR 322 DNA.  相似文献   

20.
We report a series of isostructural tetravalent actinide (Th, U−Pu) complexes with the N-donor ligand N,N’-ethylene-bis((pyrrole-2-yl)methanimine) (H2 L , H2pyren). Structural data from SC-XRD analysis reveal [An(pyren)2] complexes with different An−Nimine versus An−Npyrrolide bond lengths. Quantum chemical calculations elucidated the bonding situation, including differences in the covalent character of the coordinative bonds. A comparison to the intensely studied analogous N,N′-ethylene-bis(salicylideneimine) (H2salen)-based complexes [An(salen)2] displays, on average, almost equal electron sharing of pyren or salen with the AnIV, pointing to a potential ligand-cage-driven complex stabilisation. This is shown in the fixed ligand arrangement of pyren and salen in the respective AnIV complexes. The overall bond strength of the pure N-donor ligand pyren to AnIV (An=Th, U, Np, Pu) is slightly weaker than to salen, with the exception of the PaIV complex, which exhibits extraordinarily high electron sharing of pyren with PaIV. Such an altered ligand preference within the early AnIV series points to a specificity of the 5f1 configuration, which can be explained by polarisation effects of the 5 f electrons, allowing the strongest f electron backbonding from PaIV (5f1) to the N donors of pyren.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号