首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of two nozzle geometries and three process parameters (arc current, arc length and plasma sheath gas flow rate) on the energy distribution for an argon transferred arc is investigated. Measurements are reported for a straight bore cylindrical and for a convergent nozzle, with arc currents of 100 A and 200 A and electrode gaps of 10 mm and 20 mm. These correspond to typical operating parameters generally used in plasma transferred arc cutting and welding operations. The experimental set up consisted of three principal components: the cathode-torch assembly, the external, water-cooled anode, and the reactor chamber. For each set of measurements the power delivered to each system component was measured through calorimetric means, as function of the arc’s operating conditions. The results obtained from this study show that the shape of the cathode torch nozzle has an important influence on arc behaviour and on the energy distribution between the different system components. A convergent nozzle results in higher arc voltages, and consequently, in higher powers being generated in the discharge for the same applied arc current, when compared to the case of a straight bore nozzle. This effect is attributed to the fluidynamic constriction of the arc root attachment, and the consequential increase in the arc voltage and thus, in the Joule heating. The experimental data so obtained is compared with the predictions of a numerical model for the electric arc, based on the solution of the Navier–Stokes and Maxwell equations, using the commercial code FLUENT©. The original code was enhanced with dedicated subroutines to account for the strong temperature dependence of the thermodynamic and transport properties under plasma conditions. The computational domain includes the heat conduction within the solid electrodes and the arc-electrode interactions, in order to be able to calculate the heat distribution in the overall system. The level of agreement achieved between the experimental data and the model predictions confirms the suitability of the proposed, “relatively simple” model as a tool to use for the design and optimization of transferred arc processes and related devices. This conclusion was further supported by spectroscopic measurements of the temperature profiles present in the arc column and image analysis of the intensity distribution within the arc, under the same operating conditions.  相似文献   

2.
Double arcing phenomenon is a limit to increasing the capacity of the plasma cutting torch. In an attempt to enhance the ability of being invulnerable to the double arcing, a double nozzle structure is introduced in this paper. The reason why the double nozzle structure is less vulnerable to the double arcing phenomenon than single nozzle structure is explored. Double nozzle structure allows the longer nozzle which may cause stronger shock wave. In order to evaluate the influence of shock wave on the cutting ability, the influence of nozzle length on the double nozzle structure plasma arc is investigated. The modeling results show that the longer nozzle produces the stronger shock wave outside the nozzle outlet, but the energy flux and momentum flux become concentrated after the shock wave and increases with the increasing of nozzle length. So the double nozzle structure improves the cutting ability of the plasma torch and meanwhile be less vulnerable to the double arcing phenomenon.  相似文献   

3.
Spectroscopic measurements were performed by observing the plasma inside the kerf during cutting of stainless steel using direct current electric arc. Experiments were carried out on the plasma torch operated with the plasma gas composed of the vaporized mixture of water and ethanol; arc current was 60 A and cutting speed 30 cm/min. Emission spectral lines of neutral iron were used to experimental evaluation of the temperature of plasma in the kerf and close under the cut plate. Complicated nature of the plasma inside the kerf, including presence of metallic vapours and departures from equilibrium, was taken into account. Hence relatively reliable results were obtained, from which it was possible to get insight into the energy balance and cutting performance of the torch. Temperature of the plasma in the kerf was substantially lower than at the nozzle exit of the torch; however the temperature drop along the kerf was small.  相似文献   

4.
Nitrogen fixed in the form of nitrogen oxides is essential to produce fertilizers and many other chemical products, which is vital to sustain life. The performance of a milli-scale gliding arc reactor operated under atmospheric pressure has been studied for nitrogen oxides synthesis. In this work, the electrical and process parameters of the gliding arc reactor, such as frequency, pulse width, amplitude and feed ratio were investigated respectively. The experiments were performed at 1 L/min in a gliding arc discharge regime. The highest concentration of NOx was found to be ~1 % at energy consumption of 10 kWh/kg of NOx. Increase in frequency, pulse width and amplitude resulted in an increased specific energy input and NOx concentration. The feed ratio (N2/O2) affected the amount of NO and NO2 produced, which gives possibility to independently obtain the desired ratio of NO/NO2 by tuning the electrical and process parameters.  相似文献   

5.
During plasma spray process, many intrinsic operating parameters allow tailoring in-flight particle characteristics (temperature and velocity) by controlling the plasma jet properties, thus affecting the final coating characteristics. Among them, plasma flow mass enthalpy, flow thermal conductivity, momentum density, etc. result from the selection of extrinsic operating parameters such as the plasma torch nozzle geometry, the composition and flow rate of plasma forming gases, the arc current intensity, beside the coupled relationships between those operating parameters make difficult in a full prediction of their effects on coating properties. Moreover, temporal fluctuations (anode wear for example) require “real time” corrections to maintain particle characteristic to targeted values. An expert system is built to optimize and control some of the main extrinsic operating parameters. This expert system includes two parts: (1) an artificial neural network (ANN) which predicts an extrinsic operating window and (2) a fuzzy logic controller (FLC) to control it. The paper details the general architecture of the system, discusses its limits and the typical characteristic times. The result shows that ANN can predict the characteristics of particles in-flight from coating porosity within maximal error 3 and 2 % in temperature and velocity respectively. And ANN also can predict the operating parameters from in-flight particle characteristics with maximal error 2.34, 4.80 and 8.66 % in current intensity, argon flow rate, and hydrogen flow rate respectively.  相似文献   

6.
Synthesis of fullerenes from graphite powders of different grade was studied in a radiofrequency (RF) plasma reactor. Dependence of fullerene yield on the properties and feed rate of precursors and on the helium content of plasma gas was studied in details. The fullerene yield was influenced by the mean size and the thermal conductivity of graphite particles on the one hand, and the helium content of the gas phase on the other. Soot containing fullerene mixture of 5.9% was produced in best conditions found in this work. The main component of the fullerene mixture was C60. In addition, it contained about 30% of C70 (corresponding to a C60/C70 mass ratio of 2.64). Higher fullerenes such as C84 were also detected by mass spectroscopy (MS) and high performance liquid chromatography (HPLC).  相似文献   

7.
The experimental part of an integrated approach to design and optimization of plasma arc cutting devices will be presented; in particular results obtained through diagnostics based on high speed imaging and Schlieren photography and some evidences obtained through experimental procedures. High speed imaging enabled to investigate start-up transition phenomena in both pilot arc and transferred arc mode, anode attachment behaviour during piercing and cutting phases, cathode attachment behaviour during start-up transient in PAC torches with both retract and high frequency pulse pilot arc ignition. Schlieren photography has been used to better understand the interaction between the plasma discharge and the kerf front. The behaviour of hafnium cathodes at high current levels at the beginning of their service life was experimentally investigated, with the final aim of characterizing phenomena that take place during those initial piercing and cutting phases and optimizing the initial shape of the surface of the emissive insert.  相似文献   

8.
Transferred-arc plasma treatment of iron sulfides containing gold is examined from both thermodynamic and experimental points of view. Three cases are analyzed: argon plasma with sulfide, argon plasma with a carbon–sulfide mixture, and argon–methane plasma with sulfide. The carboreduction of the materials appears to be well adapted for gold separation by fuming, but experimentally the process is limited by the poor mixing of graphite with molten material. The reduction with a CH4 (10%) plasma is a proved alternative to the aforementioned process. A gold extraction efficiency of 90% is achieved for batch smelting operations.  相似文献   

9.
Wang  Cheng  Sun  Lu  Sun  Qiang  Zhang  Zelong  Xia  Weiluo  Xia  Weidong 《Plasma Chemistry and Plasma Processing》2019,39(2):407-421
Plasma Chemistry and Plasma Processing - At atmospheric pressure, the anode attachment can appear in two different modes: constricted and diffuse. In this paper, a magnetically rotating arc plasma...  相似文献   

10.
The combined effects of oxygen and water vapor on three typical volatile organic compounds, i.e. tetrachloromethane, n-butane and toluene, decomposition efficiency under gliding arc gas discharge conditions are studied. The electron density and the density of the reactive radicals such as O and OH are modified by addition of oxygen and water vapor. Consequently, the decomposition process can be enhanced or suppressed, depending on the involved chemical structures and reaction channels. The addition of oxygen and water vapor suppresses the tetrachloromethane decomposition which indicates that this process is mainly controlled by the electron dissociation reactions. By contrast, the n-butane and toluene decompositions are enhanced, which shows that they can be mainly ascribed to the radical induced reactions. Especially, in a moist atmosphere the OH radicals are supposed to play the most important role in the n-butane decomposition process.  相似文献   

11.
The non-steady-state process of etching of a polyamidoacid film in an nonequilibrium oxygen low-pressure inductively coupled radiofrequency-discharge plasma was studied. It was shown that an unsteady imidization process develops in the bulk of the film simultaneously with occurrence of an unsteady film etching process. The time dependence of film etching rate at varying film thickness and incident ion energy was determined. The mechanism of the unsteady etching–imidization process of the polyamidoacid film in an oxygen plasma and the role of oxygen atoms and molecules in the process are discussed.  相似文献   

12.
用顶部籽晶熔融织构法(TSMTG)制备了30min直径的YBCO超导块,研究了不同的工艺条件对样品宏观形貌、织构取向和磁浮力的影响,比较了3种样品在零场冷条件下的排斥力和场冷条件下的吸引力。结果发现:由籽晶控制取向生长的单畴YBCO样品宏观形貌是以顶部籽晶为中心的4个结晶扇区,有单一的c轴取向,零场冷条件下的排斥力和场冷条件下的吸引力最大;籽晶成核但没有控制取向生长的YB-CO样品宏观形貌是以顶部籽晶为中心的多个(大于4个)扇区,相邻扇区间夹角不等,c轴取向不一致,磁浮力性能居中;非籽晶成核生长的多畴YBCO样品,上表面是以籽晶为中心的一个边长约1cm的四方结晶区,其余部分是自发成核的多晶,样品c轴取向杂乱,磁浮力很低。  相似文献   

13.
Plasma transferred arc cladding process was used to fabricate CoNiCuFeCr multi-element alloys coatings. The experimental results show that the coating forms a face-centered-cubic solid solution phase. The microstructure of the coating is mainly composed of dendrite and discontinuous interdendritic segregation. The average hardness of the coating reaches 194.8 HV100. The nano-indentation testing indicates that the micro-hardness and elastic modulus of the coating are 3.64 GPa and 211 GPa, respectively. The CoNiCuFeCr high-entropy alloy coating has excellent wear and corrosion resistance. The wear resistance of the coating is about 1.7 times higher than that of Q235 steel substrate under the same wet sand rubber wheel abrasion testing conditions. In 1N hydrochloric acid solution, the coating presents lower i corr values in polarization curves and higher fitted R f values in EIS plots than that of as-cast 304 stainless steel.  相似文献   

14.

Non-thermal plasma is a promising technology for high purity nanomaterial synthesis in a fast, flexible and controllable process. Gliding arc discharge, as one of the most efficient non-thermal plasmas, has been widely used in gas treatment but rarely studied for the nanomaterial synthesis. In this study, a comparison study for carbon nanosheets synthesis including toluene dissociation and graphite exfoliation was investigated in a 2D gliding arc reactor at atmospheric pressure. The effects of gas flow rate, precursor concentration and power input on the structures of carbon nanosheets produced through the two synthesis routes were explored and compared. Amorphous carbon nanosheets were produced in both approaches with a few crystalline structures formation in the case of toluene dissociation. The thickness of carbon nanosheets synthesized from graphite exfoliation was less than 3 nm, which was thinner and more uniform than that from toluene dissociation. The flow rate of carrier gas has direct influence on the morphology of carbon nanomaterials in the case of toluene dissociation. Carbon spheres were also produced along with nanosheets when the flow rate decreased from 2 to 0.5 L/min. However, in the case of graphite exfoliation, only carbon nanosheets were observed regardless of the change in flow rate of the carrier gas. The generated chemical species and plasma gas temperatures were measured and estimated for the mechanism study, respectively.

  相似文献   

15.
采用刀片式不锈钢电极放电反应器,以Ar气为稀释气,研究了等离子体作用下甲烷转化制C2烃的工艺条件。考察了CH4流量、高频电源输入电压和电极间距等参数对甲烷转化率、C2烃选择性、收率和反应表观能耗的影响。结果表明,增加CH4流量,表观能耗随之降低;当输入电压和电极间距较小时,甲烷转化率随输入电压和电极间距的增大而增大,但输入电压和电极间距过大时,C2烃收率明显下降,积碳严重。在CH4流量14 mL/min、Ar气流量60 mL/min、高频电源输入电压22 V、电流0.44 A、电极间距4 mm的优化条件下,甲烷最高转化率为43.1%,C2烃收率、选择性和表观能耗分别为40.1%、93.2%和2.41 MJ/mol。C2烃中不饱和烃的体积分数可达95%以上。  相似文献   

16.
Gadolinium-doped (0.8 at.%) graphite anodes were dc arced to produce different nanocarbons. Emission spectroscopy was performed to determine the temperature and column density distributions of C2 (a3u=0) in the arc plasma under 13.3 and 60 kPa pressures in helium atmosphere. The solid products were analyzed by UV-VIS, TOF MS, HR SEM, and TEM techniques. The influence of metal catalyst on the formation of C60, and endohedral fullerenes, and carbon nanotubes is discussed.  相似文献   

17.
Plasma techniques have been used to synthesis of metal, metal compounds, and surface modification. In that processing, atmosphere is more important to the compositions and properties of nanoparticles and films. We found that the atmosphere has not only effected the compositions, but also plays a significant role on the morphologies of the products. By changing atmosphere based on different requirement, we obtained spherical Mn3O4 nanoparticles, mixture of hexangular Mn3O4 nanosheets and Mn+3O(OH) nanorods, and Mn6N2.58 nanoparticles coated with graphite layer. The compositions, structure and morphologies of the products were determined by x‐ray diffraction (XRD) and transmission electron microscopy (TEM), and electron diffraction (ED). Finally, we preliminarily discussed the reason of the effect of the atmosphere to the final products of arc plasma method.  相似文献   

18.
In this study we estimated the structural parameters of (water+propylene glycol)/sucrose esters/(benzaldhyde+ethanol) systems. The weight ratios of water/propylene glycol and that of benzaldhyde/ethanol equal 2 and 1, respectively. The sucrose esters were sucrose laurates (L595, L1695, and SM1200), sucrose myristate (M1695), sucrose palmitate (P1670), sucrose oleate (O1570), and sucrose stearate (S1570). The pseudoternary phase behavior at 37°C was explored to determine the extension of the microemulsion phase regions. A one‐phase microemulsion region extending from the oil rich region to the water rich corner was observed in these systems. It was found that minor changes in the surfactant chain length, structure, and composition suffice to provoke a considerable change in the aggregation number, core radius and interfacial area per surfactant and cosurfactant molecules head groups in the formed microemulsions. The interfacial area per surfactant head group decreases with the increase in the surfactant chain length. For a sucrose ester with a given chain length the interfacial area per surfactant head group decreases with the increase in the surfactant monoester content. The interfacial area per surfactant head group increases with the increase in the surfactant concentration and the water core volume in the formulated microemulsions.  相似文献   

19.
In this research, the reforming of simulated natural gas containing a high CO2 content under AC non-thermal gliding arc discharge with partial oxidation was conducted at ambient temperature and atmospheric pressure, with specific regards to the concept of the direct utilization of natural gas. This work aimed at investigating the effects of applied voltage and input frequency, as well as the effect of adding oxygen on the reaction performance and discharge stability in the reforming of the simulated natural gas having a CH4:C2H6:C3H8:CO2 molar ratio of 70:5:5:20. The results showed marked increases in both CH4 conversion and product yield with increasing applied voltage and decreasing input frequency. The selectivities for H2, C2H6, C2H4, C4H10, and CO were observed to be enhanced at a higher applied voltage and at a lower frequency, whereas the selectivity for C2H2 showed an opposite trend. The use of oxygen was found to provide a great enhancement of the plasma reforming of the simulated natural gas. For the combined plasma and partial oxidation in the reforming of CO2-containing natural gas, air was found to be superior to pure oxygen in terms of reactant conversions, product selectivities, and specific energy consumption. The optimum conditions were found to be a hydrocarbons-to-oxygen feed molar ratio of 2/1 using air as an oxygen source, an applied voltage of 17.5 kV, and a frequency of 300 Hz, in providing the highest CH4 conversion and synthesis gas selectivity, as well as extremely low specific energy consumption. The energy consumption was as low as 2.73 × 10−18 W s (17.02 eV) per molecule of converted reactant and 2.49 × 10−18 W s (16.60 eV) per molecule of produced hydrogen.  相似文献   

20.
The rates of the formation of gaseous products were measured and the chemical composition of surface was determined upon the surface treatment of polypropylene in an oxygen low-temperature dc discharge plasma. The mechanisms of modification and oxidative degradation were discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号