首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The inflation and bifurcation of spherical membranes is considered. The membrane material is assumed to be isotropic and hyperelastic but may be arbitrarily compressible. Qualitatively the behaviour of compressible membranes is shown to be the same as that of incompressible membranes but specific forms of strain-energy functions are chosen to illustrate possible quantitative differences.  相似文献   

2.
Bifurcations of circular cylindrical elastic tubes subjected to inflation combined with axial loading are analysed. Membrane tubes are considered in detail as a background to the more difficult analysis of thickwalled tubes described in the companion paper (Part II). Our results for membranes reinforce and extend those given by R.T. Shield and his co-workers.Two modes of bifurcation are investigated: firstly, a bulging (axisyrmmetric) mode; secondly, a prismatic mode in which the cross-section of the tube becomes non-circular. Necessary and sufficient conditions for the existence of modes of either type are given in respect of an arbitrary (incompressible isotropic) form of elastic strain-energy function. For a closed tube with a fixed axial loading many features of the results have close parallels with recent findings by D.M. Haughton and R.W. Ogden for spherical membranes. On the other hand, some results for tubes with fixed ends have no such parallel. In particular, bifurcation may, under certain conditions, occur before the inflating pressure reaches a maximum. A combination of the two modes is interpreted in terms of bending for a tube under axial compression, and the relative importance of the bending and bulging modes is discussed in relation to the length to radius ratio of the tube. The analytical results are illustrated for specific forms of strain-energy function. Corresponding analysis is given for thick-walled tubes in Part II.  相似文献   

3.
When a spherical rubber balloon of the sort used in meteorological applications is inflated, the onset of aspherical deformation is observed after the pressure maximum has been attained. Upon further inflation the balloon regains its spherical shape. Here, the rubber balloon is idealized as an elastic membrane and inflation is taken to be accomplished by a prescribed increase in enclosed volume. The axisymmetric equilibrium states of slightly imperfect membranes are determined numerically by means of the Ritz-Galerkin method. Several particular material models representative of the behavior of rubberlike solids are employed in order to illustrate a number of feautres associated with the aspherical deformation.  相似文献   

4.
In this paper, we provide a new example of the solution of a finite deformation boundary-value problem for a residually stressed elastic body. Specifically, we analyse the problem of the combined extension, inflation and torsion of a circular cylindrical tube subject to radial and circumferential residual stresses and governed by a residual-stress dependent nonlinear elastic constitutive law. The problem is first of all formulated for a general elastic strain-energy function, and compact expressions in the form of integrals are obtained for the pressure, axial load and torsional moment required to maintain the given deformation. For two specific simple prototype strain-energy functions that include residual stress, the integrals are evaluated to give explicit closed-form expressions for the pressure, axial load and torsional moment. The dependence of these quantities on a measure of the radial strain is illustrated graphically for different values of the parameters (in dimensionless form) involved, in particular the tube thickness, the amount of torsion and the strength of the residual stress. The results for the two strain-energy functions are compared and also compared with results when there is no residual stress.  相似文献   

5.
In Part I of this article, we have formulated the general structure of the equations governing small plane strain deformations which are superimposed upon a known large plane strain deformation for the perfectly elastic incompressible 'modified' Varga material, and assuming only that the initial large plane deformation is a known solution of one of three first integrals previously derived by the authors. For axially summetric deformations there are only two such first integrals, one of which applies only to the single term Varga strain-energy function, and we give here the corresponding general equations for small superimposed deformations. As an illustration, a partial analysis for the case of small deformations superimposed upon the eversion of a thick spherical shell is examined. The Varga strain-energy functions are known to apply to both natural and synthetic rubber, provided the magnitude of the deformation is restricted. Their behaviour in both simple tension and equibiaxial tension, and in comparison to experimental data, is shown graphically in Part I of this paper [1]. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
This paper is concerned with investigation of the effects of strain-stiffening on the classical limit point instability that is well-known to occur in the inflation of internally pressurized rubber-like spherical thin shells (balloons) and circular cylindrical thin tubes composed of incompressible isotropic non-linearly elastic materials. For a variety of specific strain-energy densities that give rise to strain-stiffening in the stress-stretch response, the inflation pressure versus stretch relations are given explicitly and the non-monotonic character of the inflation curves is examined. While such results are known for constitutive models that exhibit a gradual stiffening (e.g. exponential and power-law models), our primary focus is on materials that undergo severe strain-stiffening in the stress-stretch response. In particular, we consider two phenomenological constitutive models that reflect limiting chain extensibility at the molecular level. It is shown that for materials with sufficiently low extensibility no limit point instability occurs and so stable inflation is then predicted for such materials. Potential applications of the results to the biomechanics of soft tissues are indicated.  相似文献   

7.
The quasistatic inflation of a nonlinear viscoelastic spherical membrane by monotonically increasing pressure is considered. The deformation is assumed to be spherically symmetric. For the constitutive equation assumed, circumstances are shown to exist when the radius history must either have a jump discontinuity or bifurcate. A necessary condition for bifurcation and its dependence on material properties and radius history is analysed. Examples of bifurcation for various pressure histories are presented. Post-bifurcation branches are constructed and the possibility of secondary bifurcation is discussed.  相似文献   

8.
An unconstrained, non-linearly elastic, semi-infinite solid is maintained in a state of large static plane strain. A power-law relation between the pre-stretches is assumed and it is shown that this assumption is well motivated physically and is likely to describe the state of pre-stretch for a wide class of materials. A general class of strain-energy functions consistent with this assumption is derived. For this class of materials, the secular equation for incremental surface waves and the bifurcation condition for surface instability are shown to reduce to an equation involving only ordinary derivatives of the strain-energy equation. A compressible neo-Hookean material is considered as an example and it is found that finite compressibility has little quantitative effect on the speed of a surface wave and on the critical ratio of compression for surface instability.  相似文献   

9.
The deformation of a circular cylindrical elastic tube of finite wall thickness rotating about its axis is examined. A circular cylindrical deformed configuration is considered first, and the angular speed analysed as a function of an azimuthai deformation parameter at fixed axial extension for an arbitrary form of incompressible, isotropic elastic strain-energy function. This extends the analysis given previously (Haughton and Ogden, 1980) for membrane tubes.Bifurcation from a circular cylindrical configuration is then investigated. Prismatic, axisymmetric and asymmetric bifurcation modes are discussed separately. Their relative importance is assessed in relation to the wall thickness and length of the tube, the magnitude of the axial extension, and the angular speed turning-points. Numerical results are given for a specific form of strain-energy function.Amongst other results it is found that (i) for long tubes, asymmetric modes of bifurcation can occur at low values of the angular speed and before any possible axisymmetric or prismatic modes and (ii) for short tubes, there is a range of values of the axial extension (including zero) for which no bifurcation can occur during rotation.  相似文献   

10.
This paper concerns shear-band bifurcations from the homogeneous finite plane deformation of an isotropic compressible hyperelastic solid. The governing equations for the incremental plane deformation superposed on the initial finite deformation are derived and then the equilibrium equations in terms of incremental displacements are classified into the elliptic type, parabolic type, etc. From this classification follows a restriction which should be placed on the strain-energy function in order that the equilibrium equations may be either elliptic or parabolic for all principal stretches. For the hyperelastic solid complying with this restriction, the condition for the shear-band bifurcation is obtained. Finally, the incremental displacement field of an infinite series of shear bands in a slab sandwiched between slippery rigid layers is established.  相似文献   

11.
A method of obtaining a full three-dimensional non-linear Hadamard stability analysis of inhomogeneous deformations of arbitrary, unconstrained, hyperelastic materials is presented. The analysis is an extension of that given by Chen and Haughton (Proc. Roy. Soc. London A 459 (2003) 137) for two-dimensional incompressible problems. The process that we present replaces the second variation condition expressed as an integral involving a quadratic in three arbitrary perturbations, with an equivalent sixth-order system of ordinary differential equations. The positive definiteness condition is thereby reduced to the simple numerical evaluation of zeros of a well-behaved function. The general theory is illustrated by applying it to the problem of the inflation of a thick-walled spherical shell. The present analysis provides a simpler alternative approach to bifurcation problems approached by using the incremental equations of non-linear elasticity.  相似文献   

12.
The rate problem for rigid-plastic strain-hardening deformations in structures subjected to prescribed hydrostatic pressure surface load is stated rigorously with due account of finite deformations. From the basic theory, a complete solution for admissible stress and velocity fields occurring at bifurcation is obtained for the problem of a spherical shell under arbitrary combinations of internal and external pressures. An earlier proven, sufficient condition for the uniqueness of continuing quasi-static deformation of a spherical shell is shown to be one of necessity. In the case of solely external pressure, it is shown that buckling modes are excluded by attention to an isotropically strain-hardening material with a non-singular yield surface. For preponderant internal pressure, however, it is possible for the predicted bifurcation mode to occur under increasing pressure.  相似文献   

13.
A thick rectangular plate of incompressible isotropic elastic material is subjected to a pure homogeneous deformation by tensile forces or thrusts applied to a pair of opposite faces. The theory of small deformations superposed on finite deformations is applied to determine the critical conditions under which bifurcation solutions (i.e. adjacent equilibrium positions) can exist. The adjacent equilibrium positions considered are those for which the superposed deformation is two-dimensional and is coplanar with the loading force and the thickness direction of the plate, the faces of the plate normal to its thickness being force-free. A number of theorems relating to the critical conditions for superposed deformations of the flexural and barreling types are derived under conditions on the strain-energy function more general than those employed in earlier work. It is also shown how these results can be applied to the determination of the bifurcation conditions corresponding to any specified strain-energy function.  相似文献   

14.
众所周知,弹性球壳在翻转后可能不再保持球壳形状而出现起皱现象,也就是出现分支解。本文运用WKB方法,分析了各向同性且不可压缩的超弹性Varga材料球壳翻转后的变形问题。在大模数情形下,对于A-B=O(1),得到了球壳内、外径比的分支临界值的渐近表达式。对模数区域内几乎所有的模数,分析结果与数值结果吻合得很好。  相似文献   

15.
Motivated by applications to seed germination, we consider the transverse deflection that results from the axisymmetric indentation of an elastic membrane by a rigid body. The elastic membrane is fixed around its boundary, with or without an initial pre-stretch, and may be initially curved prior to indentation. General indenter shapes are considered, and the load-indentation curves that result for a range of spheroidal tips are obtained for both flat and curved membranes. Wrinkling may occur when the membrane is initially curved, and a relaxed strain-energy function is used to calculate the deformed profile in this case. Applications to experiments designed to measure the mechanical properties of seed endosperms are discussed.  相似文献   

16.
IntroductionIn 1 958,GentandLindleyobservedthephenomenonofsuddenvoidnucleationinsolidsexperimentallyintensioningahomogenousclose_grainedvulcanizedrubbercylinderforthefirsttime.ButthemathematicalmodelonvoidnucleationandgrowthhasnotbeendescribedasabifurcationproblembasedonthetheoryofnonlinearelasticmechanicsbyBall[1]until1 982 .Inrecentyears,manyinvestigationshavebeenmadeonthisaspect.Theproblemofcavitatedbifurcationforincompressibleisotropichyperelasticmaterialswithpower_lawtypehasbeeninvestig…  相似文献   

17.
The present paper deals with the use of network-based hyperelastic constitutive equations in the context of thin membranes inflation. The study focus on the inflation of plane circular membranes and the materials are assumed to obey Gaussian and non-Gaussian statistical chains network models. The governing equations of the inflation of axisymmetric thin rubber-like membranes are briefly recalled. The material models are implemented in a numerical tool that incorporates an efficient B-spline interpolation method and a coupled Newton-Raphson/arc-length solving algorithm. Two numerical examples are studied: the homogeneous inflation of spherical balloons and the inflation of initially plane circular membranes. In the second example, the inflation profiles and the distributions of extension ratios along the membrane are extensively analysed during the inflation process. Both examples highlight the need of an accurate modelling of the strain-hardening phenomenon in elastomers.  相似文献   

18.
The propagation of Love waves along the boundary between a half-space and a layer of different pre-stressed material is examined for incompressible isotropic elastic materials. The secular equation is obtained for a general strain-energy function and analysed for particular deformations and materials. For the neo-Hookean strain-energy function, numerical results are obtained to illustrate the dependence of the wavespeed on the wave number and on the deformation.  相似文献   

19.
Elastomeric membranes are frequently used in several emerging fields such as soft robotics and flexible electronics. For convenience of the structural design, it is very attractive to find simple analytical solutions to well describe their elastic deformations in response to external loadings. However, both the material/geometrical nonlinearity and the deformation inhomogeneity due to boundary constraints make it much challenging to get an exact analytical solution. In this paper, we focus on the inflation of a prestretched elastomeric circular membrane under uniform pressure, and derive an approximate analytical solution of the pressure–volume curve based upon a reasonable assumption on the shape of the inflated membrane. Such an explicit expression enables us to quantitatively design the material and geometrical parameters of the pre-stretched membrane to generate a target pressure–volume curve with prescribed peak point and initial slope. This work would be of help in the simplified mechanical design of structures involving elastomeric membranes.  相似文献   

20.
This paper proposes a procedure to deal with n-layered inclusion based composites with imperfect interfaces (which conditions consist of displacement or stress vector jumps) respecting spherical symmetry. For that purpose, “discontinuity matrices” have been introduced. These matrices have been derived for several classical interface-models and an asymptotic method has been used to determine some of them. A self-consistent condition based on a strain-energy equivalence in the case of inclusion-matrix type composite materials is restated for n-layered inclusions with imperfect interfaces and applied to get estimates of such composites materials. The remarkable feature of the presently self consistent approach is that it does not need any tedious algebra providing the attached interface models respect the spherical symmetry. The present Generalized Self Consistent Model (GSCM) is then used to study size effects and mismatch in composites reinforced by coated inclusions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号