首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Reaction of [U{(SiMe2NPh)3-tacn}Cl] with LiNEt2 or LiNPh2 affords the corresponding amide compounds, [U{(SiMe2NPh)3-tacn}(NR2)] (R = Et (1), R = Ph (2)). The complexes have been fully characterized by spectroscopic methods and the solid-state structure of 1 was determined by single-crystal X-ray diffraction analysis. The six nitrogen atoms of the tris(dimethylsilylanilide)triazacyclononane ligand are in a trigonal prismatic configuration with the nitrogen atom of the diethylamide ligand capping one of the trigonal faces of the trigonal prism. Crystallization of 2 from CH3CN solution gave crystals of the six-membered heterocycle [U{(SiMe2NPh)3-tacn}{kappa2-(HNC(Me))2CC[triple bond]N}] (3). The reactivity of the amides was investigated. Both compounds undergo acid-base reactions with protic substrates such as HOC6H2-2,4,6-Me3, 3,5-Me2pzH (pz = pyrazolyl) and HSC5H4N to give the corresponding [U{(SiMe2NPh)3-tacn}X] (X = OC6H2-2,4,6-Me3 (4), 3,5-Me2pzH (5), kappa2-SC5H4N (6)) complexes. The solid-state structures of and were determined by single-crystal X-ray diffraction and revealed that the compounds are eight-coordinate with dodecahedral geometry.  相似文献   

2.
By adjusting to the steric and electronic requirements of differing metal centers, the new multidentate monoanionic ligand [N(2)P(2)] has demonstrated a unique ability to stabilize a range of transition metal-dinitrogen complexes in a variety of oxidation states and coordination geometries.  相似文献   

3.
The reactions of a bulky amino-methoxy bis(phenolate) ligand H2L with Y(CH2SiMe3)3(THF)2 and Y[N(SiHMe2)2]3(THF)2 under mild condition leads to the selective formation of the thermally stable complexes [L]Y(CH2SiMe3)(THF) (1) and [L]Y[N(SiHMe2)2](THF) (2). The X-ray structures revealed very similar binding of the [ONOO] ligand core to the metal for both complexes, which feature an octahedral geometry involving coordination of the methoxy side-arm of the ligand and of a remaining THF molecule. 1H-NMR spectroscopy indicates that the solid state structure of 1 and 2 is retained in hydrocarbon solutions with THF coordinated to yttrium. Alkyl complex 1 showed no activity in ethylene polymerization, presumably due to the presence of coordinated THF. The amido complex 2 catalyzed sluggishly the polymerization of methyl methacrylate to give isotactic-rich PMMA but is very active for the ring-opening polymerization of ε-caprolactone.  相似文献   

4.
Metal-halide complexes of a multidentate monoanionic ligand tBuN(H)SiMe2N(CH2CH2PiPr2)2, H[N2P2], with Ti, V, Cr, Mn, Fe, Co, and Ni have been isolated and characterized. X-ray crystallographic studies were performed on [N2P2]TiCl2 (3), [N2P2]CrCl2 (5), [N2P2]MnCl (6), [N2P2]FeCl (7), [N2P2]CoCl (8), and [N2P2]NiBr (9), and the results revealed that the [N2P2] ligand exhibits considerable flexibility in the manner in which it binds to first-row metals and that three distinct coordination modes are observed: kappa3-N2P (Ti), kappa3-NP2 (Mn, Fe, Co), and kappa4-N2P2 (Cr, Ni). Electrochemical (CV) data and room-temperature magnetic susceptibilities are also described.  相似文献   

5.
The electronic structures of nickel and cobalt centers coordinated by two alpha-iminoketone ligands have been elucidated using density functional theory calculations and a host of physical methods such as X-ray crystallography, cyclic voltammetry, UV-vis spectroscopy, electron paramagnetic resonance spectroscopy, and magnetic susceptibility measurements. In principle, alpha-iminoketone ligands can exist in three oxidation levels: the closed-shell neutral form (L)0, the closed-shell dianion (L(red))(2-), and the open-shell monoanion (L*)(-). Herein, the monoanionic pi-radical form (L*)(-) of alpha-iminoketones is characterized in the compounds [(L*)2Ni] (1) and [(L*)2Co] (3), where (L*)(-) is the one-electron-reduced form of the neutral ligand (t-Bu)N=CH-C(Ph)=O. The metal centers in 1 and 3 are divalent, high-spin, and coupled antiferromagnetically to two ligand pi radicals. These bis(ligand)metal complexes can be chemically oxidized by two electrons to give the dications [trans-(L)2Ni(CH3CN)2](PF6)2 (2) and [trans-(L)2Co(CH3CN)2](PF6)2 (4), wherein the ligands are in the neutral form.  相似文献   

6.
《Tetrahedron letters》1988,29(44):5673-5676
Bis(2-hydroxy-3,5-di-t-butylphenyl)methanone (1) was found to give spirodienone derivative (3) under oxidative condition. UV irradiation of 3 afforded dibenzofuran derivative (5) through an α-fission of cyclohexa-2,4-dienone, accompanied by a loss of CO2.  相似文献   

7.
A series of ruthenium(II) acetonitrile, pyridine (py), carbonyl, SO2, and nitrosyl complexes [Ru(bdmpza)(O2CR)(L)(PPh3)] (L = NCMe, py, CO, SO2) and [Ru(bdmpza)(O2CR)(L)(PPh3)]BF4 (L = NO) containing the bis(3,5-dimethylpyrazol-1-yl)acetato (bdmpza) ligand, a N,N,O heteroscorpionate ligand, have been prepared. Starting from ruthenium chlorido, carboxylato, or 2-oxocarboxylato complexes, a variety of acetonitrile complexes [Ru(bdmpza)Cl(NCMe)(PPh3)] (4) and [Ru(bdmpza)(O2CR)(NCMe)(PPh3)] (R = Me (5a), R = Ph (5b)), as well as the pyridine complexes [Ru(bdmpza)Cl(PPh3)(py)] (6) and [Ru(bdmpza)(O2CR)(PPh3)(py)] (R = Me (7a), R = Ph (7b), R = (CO)Me (8a), R = (CO)Et (8b), R = (CO)Ph) (8c)), have been synthesized. Treatment of various carboxylato complexes [Ru(bdmpza)(O2CR)(PPh3)2] (R = Me (2a), Ph (2b)) with CO afforded carbonyl complexes [Ru(bdmpza)(O2CR)(CO)(PPh3)] (9a, 9b). In the same way, the corresponding sulfur dioxide complexes [Ru(bdmpza)(O2CMe)(PPh3)(SO2)] (10a) and [Ru(bdmpza)(O2CPh)(PPh3)(SO2)] (10b) were formed in a reaction of the carboxylato complexes with gaseous SO2. None of the 2-oxocarboxylato complexes [Ru(bdmpza)(O2C(CO)R)(PPh3)2] (R = Me (3a), Et (3b), Ph (3c)) showed any reactivity toward CO or SO2, whereas the nitrosyl complex cations [Ru(bdmpza)(O2CMe)(NO)(PPh3)](+) (11) and [Ru(bdmpza)(O2C(CO)Ph)(NO)(PPh3)](+) (12) were formed in a reaction of the acetato 2a or the benzoylformato complex 3c with an excess of nitric oxide. Similar cationic carboxylato nitrosyl complexes [Ru(bdmpza)(O2CR)(NO)(PPh3)]BF4 (R = Me (13a), R = Ph (13b)) and 2-oxocarboxylato nitrosyl complexes [Ru(bdmpza)(O2C(CO)R)(NO)(PPh3)]BF4 (R = Me (14a), R = Et (14b), R = Ph (14c)) are also accessible via a reaction with NO[BF4]. X-ray crystal structures of the chlorido acetonitrile complex [Ru(bdmpza)Cl(NCMe)(PPh3)] (4), the pyridine complexes [Ru(bdmpza)(O2CMe)(PPh3)(py)] (7a) and [Ru(bdmpza)(O2CC(O)Et)(PPh3)(py)] (8b), the carbonyl complex [Ru(bdmpza)(O2CPh)(CO)(PPh3)] (9b), the sulfur dioxide complex [Ru(bdmpza)(O2CPh)(PPh3)(SO2)] (10b), as well as the nitrosyl complex [Ru(bdmpza)(O2C(CO)Me)(NO)(PPh3)]BF4 (14a), are reported. The molecular structure of the sulfur dioxide complex [Ru(bdmpza)(O2CPh)(PPh3)(SO2)] (10b) revealed a rather unusual intramolecular SO2-O2CPh Lewis acid-base adduct.  相似文献   

8.
A new bis(bidentate) azine ligand was prepared by linking (1Z,1′Z)-1,1′-{butane-1,4-diylbis[oxybenzene-4,1-diyl(1Z)ethyl-1-ylidene]}dihydrazine to salicylaldehyde. Two kinds of binuclear copper(II) and nickel(II) complexes with different stoichiometries were prepared. Reaction of bis(azine) ligand with Cu(II) and Ni(II) acetate at a 1: 1 mole ratio gave double-stranded binuclear bis(azine) complexes with stoichiometry [M(L)(H2O)2]2 containing [M(II)N2O2] centres while at a 2: 1 mole ratio, reaction of Cu(II) and Ni(II) chloride with bis(azine) resulted in dinuclear metal complexes with the general stoichiometry [M2(L)Cl2(H2O)2]. Structures of the bis(azine) ligand and its complexes were identified by elemental analysis, IR and UV-VIS spectra, magnetic susceptibility measurements, TGA, and powder XRD. Extraction properties of the bis(azine) ligand towards some transition metal cations and dichromate anions were also reported. It was found that the bis(azine) ligand does not extract cations but it has high extraction ability towards dichromate anions.  相似文献   

9.
The new pincer ligand 2,6-bis[(1,3-di-tert-butylimidazolin-2-imino)methyl]pyridine (TL(tBu)) has been prepared in high yield from 2,6-bis(hydroxymethyl)pyridine (1) and 1,3-di-tert-butylimidazolin-2-imine (3). Reaction of TL(tBu) with [Cu(MeCN)4]PF6 affords the highly reactive copper(I) complex [(TL(tBu))Cu]PF6, [5]PF6, which forms the stable copper(I) isocyanide complexes [6a]PF6 (nu(CN) = 2179 cm(-1)) and [6b]PF6 (nu(CN) = 2140 cm(-1)) upon addition of tert-butyl or 2,6-dimethylphenyl isocyanide, respectively. For the cations 6a and 6b, DFT calculations reveal ground-state electronic structures of the type [(TL(tBu)-kappaN(1):kappaN(2))Cu(CNR)] with tricoordinate geometries around the copper atoms. Exposure of [5]PF6 to the air readily leads to trapping of atmospheric CO2 to form the square-planar complex [(TL(tBu))Cu(HCO3-kappaO)]PF6, [7]PF6, with the bicarbonate ligand adopting a rarely observed monodentate coordination mode. In chlorinated solvents such as dichloromethane or chloroform, [5]PF(6) rapidly abstracts chloride by reductive dechlorination of the solvent to yield [(TL(tBu))CuCl]PF6, [8]PF6 quantitatively. Reaction of TL(tBu) with copper(I) bromide or chloride affords complexes 9a and 9b, respectively, for which X-ray diffraction analysis, low-temperature NMR experiments and DFT calculations reveal the presence of a kappa(2)-coordinated ligand of the type [(TL(tBu)-kappaN(1):kappaN(2))CuX]. In solution, complex 9b undergoes slow disproportionation forming the mixed-valence copper(II)/copper(I) system [(TL(tBu))CuCl][CuCl2], [8]CuCl2 with a linear dichlorocuprate(I) counterion.  相似文献   

10.
A series of copper(I) complexes with a sterically hindered, bidentate ligand, BL iPr, derived from an N-heterocyclic carbene precursor have been isolated, characterized and their reactivity studied. The ethylene-bridged bis(imidazolin-2-imine) ligand (BL iPr) provides strongly donating N-donor atoms for the stabilization of a copper(I) metal center, priming it for reactivity. The complexes [(BL iPr)Cu(XyNC)]PF6 (4) and [(BL iPr)CuCl] (5) were characterized by X-ray crystallography and exhibit trigonal coordination at the copper centers. The reactivity of [(BL iPr)Cu]SbF6 toward dioxygen was studied at low temperature, indicating formation of a thermally sensitive intermediate with intense UV/Vis features and an isotope-sensitive vibration at 625 cm(-1) (599 cm(-1) with 18 O2). The intermediate is assigned as containing the bis(mu-oxo)dicopper(III) core, [2](PF6)2, and the related, stable hydroxo form was crystallized as [{(BL iPr)Cu}2(mu-OH)2](PF6)2, [3](PF6)2. The reactivity of 5 as a catalyst for the ATR polymerization of styrene was assessed in terms of reaction kinetics and polymer properties, with low PDI values achieved for polymers with molecular weights up to 30 000 g mol(-1).  相似文献   

11.
Wong CY  Lee FW  Che CM  Cheng YF  Phillips DL  Zhu N 《Inorganic chemistry》2008,47(22):10308-10316
trans-[Ru(16-TMC)(C[triple bond]N)2] (1; 16-TMC = 1,5,9,13-tetramethyl-1,5,9,13-tetraazacyclohexadecane) was prepared by the reaction of trans-[Ru(16-TMC)Cl2]Cl with KCN in the presence of zinc powder. The oxidation of 1 with bromine gave trans-[Ru(16-TMC)(CN)2]+ isolated as PF6 salt (2.PF6). The Ru-C/C-N distances are 2.061(4)/1.130(5) and 2.069(5)/1.140(7) A for 1 and 2, respectively. Both complexes show a Ru(III/II) couple at 0.10 V versus FeCp2+/0. The UV-vis absorption spectrum of 1 is dominated by an intense high-energy absorption at lambda(max) = 230 nm, which is mainly originated from dpi(RuII) --> pi*(N[triple bond]C-Ru-C[triple bond]N) charge-transfer transition. Complex 2 shows intense absorption bands at lambda(max) pi*(N[triple bond]C-Ru-C[triple bond]N) and sigma(-CN) --> d(RuIII) charge-transfer transition, respectively. Density functional theory and time-dependent density-functional theory calculations have been performed on trans-[(NH3)4Ru(C[triple bond]N)2] (1') and trans-[(NH3)4Ru(C[triple bond]N)2]+ (2') to examine the Ru-cyanide interaction and the nature of associated electronic transition(s). The 230 nm band of 1 has been probed by resonance Raman spectroscopy. Simulations of the absorption band and the resonance Raman intensities show that the nominal nuC[triple bond]N stretch mode accounts for ca. 66% of the total vibrational reorganization energy. A change of nominal bond order for the cyanide ligand from 3 to 2.5 is estimated upon the electronic excitation.  相似文献   

12.
Peroxomanganese(iii) adducts have been postulated as important intermediates in manganese-containing enzymes and small molecule oxidation catalysts. Synthetic peroxomanganese(iii) complexes are known to be nucleophilic and facilitate aldehyde deformylation, offering a convenient way to compare relative reactivities of complexes supported by different ligands. In this work, tetradentate dipyridyldiazacycloalkane ligands with systematically perturbed steric and electronic properties were used to generate a series of manganese(ii) and peroxomanganese(iii) complexes. X-Ray crystal structures of five manganese(ii) complexes all show the ligands bound to give trans complexes. Treatment of these Mn(II) precursors with H(2)O(2) and Et(3)N in MeCN at -40 °C results in the formation of peroxomanganese(iii) complexes that differ only in the identity of the pyridine ring substituent and/or the number of carbons in the diazacycloalkane backbone. To determine the effects of small ligand perturbations on the reactivity of the peroxo group, the more thermally stable peroxomanganese(iii) complexes were reacted with cyclohexanecarboxaldehyde. For these complexes, the rate of deformylation does not correlate with the expected nucleophilicity of the peroxomanganese(iii) unit, as the inclusion of methyl substituents on the pyridines affords slower deformylation rates. It is proposed that adding methyl-substituents to the pyridines, or increasing the number of carbons on the diazacycloalkane, sterically hinders nucleophilic attack of the peroxo ligand on the carbonyl carbon of the aldehyde.  相似文献   

13.
The air-sensitive bis(micro-iodo)dicopper(I) complex 1 supported by [N-(3,5-di-tert-butyl-2-hydroxybenzyl)-N,N-di-(2-pyridylmethyl)]amine (L) has been prepared by treating copper(I) iodide with L in anhydrous THF. Compound 1 crystallizes as a dimer in space group C2/c. Each copper(I) center has distorted tetrahedral N2I2 coordination geometry with Cu-N(pyridyl) distances 2.061(3) and 2.063(3) A, Cu-I distances 2.6162(5) and 2.7817(5) and a Cu...Cu distance of 2.9086(8) A. Complex 1 is rapidly oxidized by dioxygen in CH2Cl2 with a 1 : 1 stoichiometry giving the bis(micro-iodo)peroxodicopper(II) complex [Cu(L)(micro-I)]2O2 (2). The reaction of 1 with dioxygen has been characterized by UV-vis, mass spectrometry, EPR and Cu K-edge X-ray absorption spectroscopy at low temperature (193 K) and above. The mass spectrometry and low temperature EPR measurements suggested an equilibrium between the bis(micro-iodo)peroxodicopper(II) complex 2 and its dimer, namely, the tetranuclear (peroxodicopper(II))2 complex [Cu(L)(micro-I)]4O4 (2'). Complex 2 undergoes an effective oxo-transfer reaction converting PPh3 into O=PPh3 under anaerobic conditions. At sufficiently high concentration of PPh3, the oxygen atom transfer from 2 to PPh3 was followed by the formation of [Cu(PPh3)3I]. The dioxygen reactivity of 1 was compared with that known for other halo(amine)copper(I) dimers.  相似文献   

14.
The coordination chemistry of the bis(dimethylphenylsilyl)amide ligand, [N(SiMe2Ph)2]1-, with sodium, potassium, and lanthanum has been investigated for comparison with the more commonly used [N(SiMe3)2]1- and [N(SiHMe2)2]1- ligands. HN(SiMe2Ph)2 reacts with KH to produce KN(SiMe2Ph)2, 1, which crystallizes from toluene as the dimer [KN(SiMe2Ph)2(C7H8)]2, 2. The structure of 2 shows that the [N(SiMe2Ph)2]1- ligand can function as a polyhapto ligand with coordination from each phenyl group as well as the normal nitrogen ligation and agostic methyl interactions common in methylsilylamides. Each potassium in 2 is ligated by an eta4-toluene, two bridging nitrogen atoms, and an eta2-phenyl, an eta1-phenyl, and an eta1-methyl group. KN(SiMe2Ph)2 crystallizes from toluene in the presence of 18-crown-6 to make the monometallic complex (18-crown-6)KN(SiMe2Ph)2, 3, in which [N(SiMe2Ph)2]1- functions as a simple monodentate ligand through nitrogen. The reaction of HN(SiMe2Ph)2 with NaH in THF at reflux for 2 days generates Na[N(SiMe2Ph)2], 4, which crystallizes as the solvated dimer {(THF)Na[mu-eta1:eta1-N(SiMe2Ph)2]}2, 5. A lanthanide metallocene derivative of [N(SiMe2Ph)2]1- was obtained by reaction of K[N(SiMe2Ph)2] with [(C5Me5)2La][(mu-Ph)2BPh2]. Crystals of (C5Me5)2La[N(SiMe2Ph)2], 6, show agostic interactions between lanthanum and methyl groups of each silyl substituent. The [N(SiMe3)2]1- analogue of 3, (18-crown-6)KN(SiMe3)2, 7, was also structurally characterized for comparison.  相似文献   

15.
Molybdenum and tungsten bis(dinitrogen) complexes of the formula M(N(2))(2)(PNP)(2) (M = Mo and W) and W(N(2))(2)(dppe)(PNP), supported by diphosphine ligands containing a pendant amine of the formula (CH(2)PR(2))(2)NR' = P(R)N(R')P(R) (R = Et, Ph; R' = Me, Bn), have been prepared by Mg reduction of metal halides under an N(2) atmosphere. The complexes have been characterized by NMR and IR spectroscopy, X-ray crystallography, and cyclic voltammetry. Reactivity of the target Mo and W bis(dinitrogen) compounds with CO results in the formation of dicarbonyl complexes.  相似文献   

16.
Five-coordinate gallium and aluminium dihydrides, H2Ga[N(CH2CH2NMe2)2] () and H2Al[N(CH2CH2NMe2)2] (), were synthesized and found to be volatile and thermally stable. and reacted with H3Ga(NMe3) and H3Al(NMe3), respectively, to form H2Ga[N(CH2CH2NMe2)2]GaH3 () and H2Al[N(CH2CH2NMe2)2]AlH3 (), in which the amido nitrogen bridged between the MH2 and MH3 groups (M=Ga or Al). A mixed metal complex, H2Al[N(CH2CH2NMe2)2]GaH3 () was obtained from the reaction of with H3Al(NMe3) or with H3Ga(NMe3), and a crystal consisting of a mixture of and was structurally characterized. The five-coordinate chloro derivative, Cl2Ga[N(CH2CH2NMe2)2] (), was synthesized and characterized.  相似文献   

17.
The synthesis, characterization and reactivity of heteroleptic rare earth metal complexes supported by the carbon-bridged bis(phenolate) ligand 2,2'-methylene-bis(6-tert-butyl-4-methyl-phenoxo) (MBMP(2-)) are described. Reaction of (C(5)H(5))(3)Ln(THF) with MBMPH(2) in a 1 : 1.5 molar ratio in THF at 50 degrees C produced the heteroleptic rare earth metal bis(phenolate) complexes (C(5)H(5))Ln(MBMP)(THF)(n) (Ln = La, n = 3 (); Ln = Yb (), Y (), n = 2) in nearly quantitative yields. The residual C(5)H(5)(-) groups in complexes to can be substituted by the bridged bis(phenolate) ligands at elevated temperature to give the neutral rare earth metal bis(phenolate) complexes, and the ionic radii have a profound effect on the structures of the final products. Complex reacted with MBMPH(2) in a 1 : 0.5 molar ratio in toluene at 80 degrees C to produce a dinuclear complex (MBMP)La(THF)(mu-MBMP)(2)La(THF)(2) () in good isolated yield; whereas complexes and reacted with MBMPH(2) under the same conditions to give (MBMP)Ln(MBMPH)(THF)(2) (Ln = Yb (), Y ()) as the final products, in which one hydroxyl group of the phenol is coordinated to the rare earth metal in a neutral fashion. The reactivity of complexes and with some metal alkyls was explored. Reaction of complex with 1 equiv. of AlEt(3) in toluene at room temperature afforded unexpected ligand redistributed products, and a discrete ion pair ytterbium complex [(MBMP)Yb(THF)(2)(DME)][(MBMP)(2)Yb(THF)(2)] () was isolated in moderate yield. Furthermore, reaction of complex with 1 equiv. of ZnEt(2) in toluene gave a ligand redistributed complex [(mu-MBMP)Zn(THF)](2) () in reasonable isolated yield. Similar reaction of complex with ZnEt(2) also afforded complex ; whereas the reaction of complex with 1 equiv. of n-BuLi in THF afforded the heterodimetallic complex [(THF)Yb(MBMP)(2)Li(THF)(2)] (). All of these complexes were well characterized by elemental analyses, IR spectra, and single-crystal structure determination, in the cases of complexes , and -.  相似文献   

18.
Shi  Tong  Zheng  Quan-De  Zuo  Wei-Wei  Liu  Shao-Feng  Li  Zhi-Bo 《高分子科学》2018,36(2):149-156
Two types of bifunctional bis(salicylaldimine) ligands (syn-L and anti-L) were designed and synthesized to support bimetallic aluminum complexes.Owing to the rigid anthracene skeleton,syn-L and anti-L successfully locked two Al centers in close proximity (syn-Al2) and far apart (anti-Al2),respectively.The distance between two Al centers in syn-Al2 was defined by X-ray diffraction as 6.665 (A),which is far shorter than that in anti-Al2.In the presence of stoichiometrical BnOH,syn-Al2 and anti-Al2 were both efficient for ring-opening polymerization (ROP) of rac-LA with the former being more active.In the presence of excess BnOH,syn-Al2 showed an efficient and immortal feature,consistent with high conversions,matched Mns,narrow molecular weight distributions and end group fidelity,while anti-Al2 had a much lower activity or even became entirely inactive due to rapid decomposition,indicated by in situ 1H-NMR experiments of A1 complexes with BnOH.  相似文献   

19.
Nickel(II) complexes of a series of N,N'-polymethylenebis(3,5-Bu(2)(t)-salicylaldimine) ligands containing 2,4-di-Bu(2)(t)-phenol arms, NiL(x), were synthesized and their spectroscopic and redox properties were examined. The UV-vis, (1)H NMR spectroscopic and magnetic results indicate that complexes NiL(1)-NiL(4) unlike NiL(5) and NiL(6) have a square-planar structure in the solid state and in solution. Cyclic voltammograms of NiL(x) (x=1-4) complexes displayed two-step oxidation processes. The first oxidation peak potentials of all Ni(II) complexes corresponds to the reversible one-electron oxidation process of the metal center, yielding Ni(III) species. The second oxidation peak of the complexes was assigned as the ligand based oxidation generating a coordinated phenoxyl radical species.  相似文献   

20.
The chemistry of bis(3,5-dimethylpyrazolyl)methane complexes of copper(I) has been investigated and a dinuclear copper(I) derivative of formula {Cu2[μ-CH2(3,5-Me2Pz)2]2}(TfO)2 [TfO = trifluoromethanesulphonate anion, ], characterized by an uncommon bridging coordination of the bis(pyrazolyl)methane ligands, has been isolated and characterized by X-ray diffraction methods. Moreover, new olefin derivatives of general formula [Cu[CH2(3,5-Me2Pz)2](olefin)]TfO have been prepared (olefin: coe = cyclooctene, van = 4-vinylanisole, nbe = norbornene), their carbonylation reactions, {Cu[CH2(3,5-Me2Pz)2](olefin)}TfO + CO ? {Cu[CH2(3,5-Me2Pz)2](CO)}TfO + olefin, have been studied gas volumetrically and the thermodynamical parameters of the equilibria for the displacement of the coordinated olefin by carbon monoxide have been determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号