首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
N M GASANLY 《Pramana》2016,86(6):1383-1390
Photoluminescence (PL) spectra of CuIn5S8 single crystals grown by Bridgman method have been studied in the wavelength region of 720–1020 nm and in the temperature range of 10–34 K. A broad PL band centred at 861 nm (1.44 eV) was observed at T = 10 K. Variations of emission band has been studied as a function of excitation laser intensity in the 0.5– 60.2 mW cm?2 range. Radiative transitions from shallow donor level located at 17 meV below the bottom of the conduction band to the acceptor level located at 193 meV above the top of the valence band were suggested to be responsible for the observed PL band. An energy level diagram showing transitions in the band gap of the crystal has been presented.  相似文献   

2.
Experimental photoelectron spectra of a clean polycrystalline Mo surface excited by monochromatized Al K α X-rays are presented. The spectra are compared with valence bands obtained by UPS and by band structure calculations within the 5 eV region below the Mo Fermi level. All results mentioned above display peaks at 0.3, 1.7, 2.8 and 4 eV belowE F. The energy distribution of the valence band does not vary with photon energy and electron emission angle for the four different polycrystalline Mo surfaces compared. It is concluded that the four peaks representing the Mo valence band are predominantly of bulk origin.  相似文献   

3.
《Infrared physics》1993,34(6):655-659
The relaxation processes of the photoexcited carriers from the defect level in the band gap to the valence band states were investigated in Na and Tl doped p-type PbTe single crystals at T = 77 K. The observed photosignal oscillations were proved to be induced by stimulated recombination of photoexcited carriers from the defect level Ed ≈ 50 meV above the top of the valence band. Non-equilibrium carrier inversion population was produced by impulses of a TEA CO2-laser. The observed stimulated recombination may presumably be used for designing IR semiconductor lasers operating in the wavelength range of λ ∼ 25 μm at T = 77 K.  相似文献   

4.
The adsorption of oxygen molecules on evaporated gallium films has been studied by UV photoelectron spectroscopy between 10 and 300 K. In addition to the oxygen levels, the chemical shift of the Ga 3d core level has been investigated using monochromatized light from a He discharge lamp at ?ω = 40.8 eV. Four different states of oxygen have been found depending on temperature. At 10 K the molecules of the first layer are physisorbed onto which several additional layers can be condensed. The rigid relaxation shifts to smaller binding energies are 2.7 eV for physisorbed and 1.3 eV for condensed oxygen. During warming-up the oxygen reacts with the gallium surface. Between 70 and 130 K an oxygen species develops which is interpreted as chemisorbed molecular oxygen. This is concluded from the valence band UP spectra, the chemical shift of the Ga 3d level, and the work function change. At 300 K oxygen is dissociatively bound and the bulk oxide grows.  相似文献   

5.
The absorption coefficient of α-AlB12 was measured on single crystal samples at T=300 K within a broad spectral region (0.6–25 μm). In the region of the transparency window (3–6 μm), the absorption coefficient was measured in the temperature range from 165 to 650 K. An analysis of the experimental data shows that the energy spectrum of local states in the α-AlB12 bandgap has certain features. It was established that a broad band of local states lies near the conduction band and that a trap level is located at 0.11±0.02 eV from the top of the valence band. __________ Translated from Fizika Tverdogo Tela, Vol. 43, No. 9, 2001, pp. 1573–1574. Original Russian Text Copyright ? 2001 by Zaitsev, Fedorov, Golikova, Orlov. Deceased.  相似文献   

6.
The electron absorption spectrum of thin films of the Ag2ZnI4 complex compound is studied at photon energies of 3–6 eV. It is established that the interband absorption edge corresponds to an allowed direct transitions across the energy gap E g=3.7 eV. A strong exciton band is adjacent to the absorption edge at E ex=3.625 eV (80 K); in the 80–390 K range, the temperature behavior of the half-width Γ of this band is determined by the exciton-phonon interaction typical of quasi-one-dimensional excitons. At T≤390 K, a discontinuity in the slope of the E ex(T) and Γ(T) dependences is observed. This discontinuity is associated with the generation of Frenkel defects and is accompanied by the transfer of Ag ions to the interstitial sites and vacancies of the crystal lattice of the compound.  相似文献   

7.
To identify the manganese related defect levels in GaSe, GaSe:Mn single crystals were grown with various Mn dopant levels using the Bridgman technique and the photoconductivity and photoluminescence properties were investigated. Peaks introduced by the manganese related defects were observed at 1.916 and 1.724 eV in the photoconductivity spectra and at 1.804 eV in the photoluminescence spectra at 80 K. These results allow the calculation of the energies of the A1 and A2 centers at 0.348 and 0.156 eV, respectively, above the valence band and a donor level at 0.112 eV below the conduction band. Also, we find that the A1 and A2 centers are pinned within the conduction band from measurements of the temperature dependence of the photoconductivity spectra.  相似文献   

8.
The theory of optical absorption due to transitions between a valence band and a hydrogen-like local level associated with a conduction band is modified to permit an arbitrary power-law dependence of energy on the magnitude of the wave-vector of carriers in the valence band. The observed absorption for photon energies below 1.6 eV in the ferromagnetic semiconductor CdCr2Se4 is discussed in terms of a combination of two types of terms. The first type of absorption is due to transitions to a local level from a band with two branches, in each of which there is an energy region with a width of 0.28 eV or more beginning 0.10–0.16 eV from the band edge, in which the energy measured from some origin near but not necessarily equal to the band-edge is approximately proportional to (wave-vector)(13). The second type of absorption has a dependence on photon energy ?ω of the form (?ω ? E3)2, where E3 is a threshold energy probably connected with indirect transitions between bands as suggested by Sakai, Sugano and Okabe. After constraints on parameters appearing in the theory are imposed by use of results of these authors and of Shepherd, it is found that curves of Harbeke and Lehmann on optical absorption in CdCr2Se4 at 4.2, 78, 130 and 298 K in the photon-energy range 1.14–1.42 eV can be fitted to a mean accuracy of 3%, using an average of 3.75 adjustable parameters for each curve. The strength of the indirect band-to-band absorption does not have the temperature dependence expected for phonon-assisted indirect band-to-band transitions, but can be described by a term independent of temperature plus another term proportional to the square of the deviation of the magnetization from saturation. The fitting of the absorption curves requires that the ratio of the widths of the two branches of the bands varies from about 1.6 at low temperatures to 1.35 at 298 K and that the total width of the bands involved is less than 1 eV.  相似文献   

9.
By simultaneous evaporation of LiI and Li onto a cooled substrate F centers can be produced in the hexagonal (78 K<T K <200 K) and amorphous (T K <78 K) phase of one and the same salt. In both modifications there exist two types of centers F and F*. The F* center differs from the cubic F center (T d -symmetry) by a nearby Frenkel defect. In hexagonal films the normal F band peaks at 2.58 eV, whereas the transitions of the F* center appear at 2.92 and 2.58 eV too. Polarized irradiation at 20 K causes a dichroic behaviour of the F* centers. Both types of centers can be transformed into one another photochemically. In the amorphous phase all transitions are shifted to lower energies by about 0.1 eV. After the phase change amorphous→hexagonal the absorption bands shift back by the same amount of energy. AboveT K =230 K the excess metal forms colloids. The absorption bands are due to colloidal centers embedded in the crystalline material (2.25 eV) and films adsorbed to the crystallites (3.1 eV), respectively. By annealing a particle growth can be observed. After electrolytic colouration cubic single crystals of LiI exhibit an absorption band peaking at 2.36 eV. However, it is not yet sure, if this band is allowed to be ascribed to F centers.  相似文献   

10.
The dark electrical conductivity of β-metal free phthalocyanine single crystals has been investigated over the temperature range 273–600°K, at a reduced pressure of 10?7 torr. The results obtained are in accordance with the model proposed by Barbe and Westgate[5] for this material, in which the energy gap between the top of the valence band and the bottom of the conduction band is determined to be 2·00 eV. At temperatures below about 410°K, the conduction process is consistent with the presence of an electron trapping level located 0·32 eV below the conduction band edge, with a density of 7×1016 cm?3, and a donor level of density 2×107 cm?3 at the same energy. Above about 410°K, there is evidence to suggest that the conduction process is intrinsic.  相似文献   

11.
The electron distribution in the valence band from single crystals of titanium carbide has been studied by photoelectron spectroscopy with photon energies h?ω = 16.8, 21.2, 40.8 and 1486.6 eV. The most conspicious feature of the electron distribution curves for TiC is a hybridization between the titanium 3d and carbon 2p states at ca. 3–4-eV binding energy, and a single carbon 2s band at ca. 10 eV. By taking into account the strong symmetry and energy dependence of the photoionization crosssections, as well as the surface sensitivity, we have identified strong emission from a carbon 2p band at ? 2.9-eV energy. Our results are compared with several recent energy band structure calculations and other experimental data. Results from pure titanium, which have been used for reference purposes, are also presented.The valence band from single crystals of titanium carbide have been studied by means of photoelectron spectroscopy, with photon energies ranging from 16.8 to 1486.6 eV.By taking into account effects such as the symmetry and energy dependence of the photoionization cross-sections and surface sensitivity, we have found the valence band of titanium carbide to consist of two peaks. The upper part of the valence band at 3–4 eV below the Fermi level consists of a hybridization between Ti 3d and C 2p states. The C 2p states observed in our spectra were mainly excited from a band about 2.9 eV below the Fermi level. The APW5–9, MAPW10 and EPM11 band structure calculations predict a flat band of p-character between the symmetry points X4 and K3, most likely responsible for the majority of C 2p excitations observed. The C 2s states, on the other hand, form a single band centered around ?10.4 eV.The results obtained are consistent with several recent energy band structure calculations5–11, 13 that predict a combined bonding of covalent, ionic and metallic nature.  相似文献   

12.
We have observed the modulated reflectance spectra of n and p type GaSb at 300, 80, and 5 K from 0.56 to 2 eV. The modulated reflectance of intrinsic n type InSb was measured at 80 K from 0.2 to 2 eV. The “dry sandwich” vapor deposition technique was used to make the electroreflectance (ER) samples. The low-temperature spectrum of the undoped p type GaSb sample shows three peaks at the band edge that could be associated with transitions from the top of the valence band, the light (0.903 eV) and heavy (1.014eV) hole state Fermi levels to the conduction band. The energies of the observed peaks are in agreement with the Fermi level determination from Hall effect and Faraday rotation measurements. This modulation mechanism is based on band population effects. The ER signal of InSb under flatband condition at 80 K has five half oscillations at the direct band gap. The contribution of piezoelectric strain to ER is present since the dc bias required to achieve flatband condition is different at the band gap than at E1. The ER signal corresponding to the direct gap energy E0 and to the spin-orbit energy E0 + Δ0 was determined in the n and p type samples of GaSb at different temperatures. We have measured the intrinsic energy gap in GaSb at room temperature. Eg = 0.74 eV. The corresponding spin-orbit splitting was found to be Δ0 = 0.733 ± 0.002 eV.  相似文献   

13.
Ultraviolet photoemission spectroscopy with hv < 12 eV has been used to study O2, CO, and H2 adsorption on the cleaved GaAs(110) face. It was found that O2 exposures above 105 L(1LM = 10?6 Torr sec) were required to produce changes in the energy distribution curves. At O2 exposures of 106 L on p-type and 108 L on n-type an oxide peak is observed in the EDC's located 4 eV below the valence band maximum. On p-type GaAs, O2 exposures cause the Fermi level at the surface to move up to a point 0.5 eV above the valence band maximum, while on n-type GaAs O2 exposures do not remove the Fermi level pinning caused by empty surface states on the clean GaAs. CO was found to stick to GaAs, but to desorb over a period of hours, and not to change the surface Fermi level position. H2 did not affect the EDC's, but atomic H lowered the electron affinity and raised the surface position of the Fermi level on p-type GaAs. A correlation is found in which gases which stick to the GaAs cause an upward movement of the Fermi level at the surface on p-type GaAs, while gases which stick only temporarily do not change the surface position of the Fermi level.  相似文献   

14.
In this letter we present calculations for surface states in high symmetry points Γ, M, X and X' of Jones' zone of GaAs (110), using a step barrier potential. It is found that only four surface states appear in the thermal gap; two in Γ point at 0.38 and 1.2 eV from the top of the valence band considered as origin of energies, one at 0.8 eV in M point and another in X′ point at 0.3 eV. Also, we obtain a low band of surface states between ?3 and ?5.5 eV.  相似文献   

15.
Absorption measurements were made on single crystals and thin films of Zn3As2; within the photon energy range of 0.12–1.16 eV at temperatures of 300, 80 and 5 K and reflectivity was measured in the range of 1.0–5.5 eV at 300 K. Absorption below the fundamental edge has been interpreted as a process involving three mechanisms: (i) free-carrier absorption, (ii) intraband transitions between levels in the valence band, and (iii) direct transitions from valence levels to the acceptor level/band. The fundamental absorption edge has been ascribed to direct interband transitions from three valence levels to one conduction level. An isotropic three-level Kane band model has been used to interpret the experimental data, modified by introducing the light-hole level split from the heavy-hole level due to the tetragonal crystal field. A reasonable fit of the model to the experimental results has been obtained in the region of both intraband and interband absorption for the following set of parameters: Eg = 0.985 eV, ΔSO = 0.30 eV, ΔCF = 0.05 eV, m*hh = 0.36 m0 and P = 4 × 10?10eVm (at 300 K). A proposed Zn3As2 energy-band model near the Γ point is described to interpret the observed absorption.  相似文献   

16.
Optical measurements made on CdTe put in light an extrinsic transition previously used to determine the interband edge of this compound. The donor level involved has a depth of 30 meV inside the bandgap at 77°K and of 60meV at 300°K. The value obtained for its temperature coefficient, suggests an association of this level with the L minimum of the conduction band.Also, determined is the true optical bandgap of CdTe between many conflicting results. One obtains: Eg = 1.529 meV with a temperature coefficient of ?3.10?4eV/°K.  相似文献   

17.
The paper presents the X-ray photoelectron spectra (XPS) of the valence band and core levels of semiconductor ferroelectric Sb2S3 single crystals, which show weak phase transitions and anomalies of various physical properties. The XPS were measured with monochromatized Al K α radiation in the energy range 0-1450 eV and the temperature range 160-450 K. The valence band is located 0.8-7.5 eV below the Fermi level. Experimental results of the valence band and core levels are compared with the results of theoretical ab initio calculations of the molecular model of Sb2S3 crystal. The chemical shifts in Sb2S3 crystal for the Sb and S states are obtained. Results revealed that the small structural rearrangements at the phase transition T c1 = 300 K shift the Fermi level and all electronic spectrum. Also, temperature dependence of a spontaneous polarisation shifts the electronic spectra of the valence band and core levels. Specific temperature-dependent excitations in Sb 3d core levels are also revealed.  相似文献   

18.
Tunneling measurements of dI/dV, d 2 I/dV 2, and d 3 I/dV 3 were formed along the C 3 axis (normally to layers) for Bi2Te3 and Sb2Te3 layered semiconductors in the temperature range 4.2<T>29 5 K. Temperature dependences of the forbidden band energy E g were obtained. The forbidden band energy in Bi2Te3 was 0.20 eV at room temperature and increased to 0.24 eV at T=4.2 K. The E g value for Sb2Te3 was 0.25 eV at 295 K and 0.26 eV at 4.2 K. The distance between the top of the higher valence band of light holes and the top of the valence band of heavy holes situated lower was found to be ΔE V≈19 meV in Bi2Te3; this distance was independent of temperature. The conduction bands of Bi2Te3 and Sb2Te3 each contain two extrema with distances between them of ΔE c≈25 and 30 meV, respectively.  相似文献   

19.
利用变频导纳谱研究了γ辐照前后Hg1-xCdxTe(x=0.6)n+-on-p结中的深能级缺陷.辐照前其缺陷能级位置在价带上0.15 eV,俘获截面σp=2.9×10-18cm2,缺陷密度Nt=6.5×1015cm-3,初步认为是Hg空位或与其相关的复合缺陷;经过104Gy的γ辐照后其能级变得更深,在价带上0.19 eV,同时其俘获截面增加了近一个数量级,而缺陷密度基本上没有变化.γ辐照引入的这种能级变化最终使器件的性能(探测率)下降了1/2以上. 关键词:  相似文献   

20.
The valence band density of states for PbI2 is determined from X-ray and u.v. induced photoelectron spectra. It is shown that the band derived from Pb 6s states is at 8 eV binding energy and not at the top of the valence bands as suggested by band structure and charge density calculations. A rigid shift in the predominantly iodine 5p derived bands to lower binding energy brings the band structure calculations into essential agreement with experiment. Pb 5d core level binding energies determined here are used to derive core level exciton energies of 0.7 eV from published reflectivity spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号