首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
In 2007, Andrews and Paule introduced the notion of broken k-diamond partitions. Let \(\Delta _k(n)\) denote the number of broken k-diamond partitions of n for a fixed positive integer k. Recently, Paule and Radu presented some conjectures on congruences modulo 7 for \(\Delta _3(n)\) which were proved by Jameson and Xiong based on the theory of modular forms. Very recently, Xia proved several infinite families of congruences modulo 7 for \(\Delta _3(n)\) using theta function identities. In this paper, many new infinite families of congruences modulo 7 for \(\Delta _3(n)\) are derived based on an identity of Newman and the (pk)-parametrization of theta functions due to Alaca, Alaca and Williams. In particular, some non-standard congruences modulo 7 for \(\Delta _3(n)\) are deduced. For example, we prove that for \(\alpha \ge 0\), \(\Delta _3\left( \frac{14\times 757^{\alpha }+1}{3}\right) \equiv 6 -\alpha \ (\mathrm{mod}\ 7)\).  相似文献   

2.
The notion of broken k-diamond partitions was introduced by Andrews and Paule. Let \(\Delta _k(n)\) denote the number of broken k-diamond partitions of n for a fixed positive integer k. Recently, Paule and Radu conjectured that \(\Delta _3(343n+82)\equiv \Delta _3(343n+278)\equiv \Delta _3(343n+327)\equiv 0\ (\mathrm{mod} \ 7)\). Jameson confirmed this conjecture and proved that \(\Delta _3(343n+229)\equiv 0 \ (\mathrm{mod} \ 7)\) by using the theory of modular forms. In this paper, we prove several infinite families of Ramanujan-type congruences modulo 7 for \(\Delta _3(n)\) by establishing a recurrence relation for a sequence related to \(\Delta _3(7n+5)\). In the process, we also give new proofs of the four congruences due to Paule and Radu, and Jameson.  相似文献   

3.
The notion of broken k-diamond partitions was introduced by Andrews and Paule in 2007. For a fixed positive integer k, let \(\Delta _k(n)\) denote the number of broken k-diamond partitions of n. Recently, Paule and Radu conjectured two relations on \(\Delta _5(n)\) which were proved by Xiong and Jameson, respectively. In this paper, employing these relations, we prove that, for any prime p with \(p\equiv 1\ (\mathrm{mod}\ 4)\), there exists an integer \(\lambda (p)\in \{2,\ 3,\ 5,\ 6,\ 11\}\) such that, for \(n, \alpha \ge 0\), if \(p\not \mid (2n+1)\), then
$$\begin{aligned} \Delta _5\left( 11p^{\lambda (p)(\alpha +1)-1} n+\frac{11p^{\lambda (p)(\alpha +1)-1}+1}{2}\right) \equiv 0\ (\mathrm{mod}\ 11). \end{aligned}$$
Moreover, some non-standard congruences modulo 11 for \(\Delta _5(n)\) are deduced. For example, we prove that, for \(\alpha \ge 0\), \(\Delta _5\left( \frac{11\times 5^{5\alpha }+1}{2}\right) \equiv 7\ (\mathrm{mod}\ 11)\).
  相似文献   

4.
Andrews recently defined new combinatorial objects which he called (ki)-singular overpartitions and proved that they are enumerated by \(\overline{C}_{k,i}(n)\) which is the number of overpartitions of n in which no part is divisible by k and only the parts \(\equiv \pm i \pmod {k}\) may be overlined. Andrews further showed that \(\overline{C}_{3,1}(n)\) satisfies some Ramanujan-type congruences modulo 3. In this paper, we show that for any pair (ki), \(\overline{C}_{k,i}(n)\) satisfies infinitely many Ramanujan-type congruences modulo any power of prime coprime to 6k. We also show that for an infinite family of k, the value \(\overline{C}_{3k,k}(n)\) is almost always even. Finally, we investigate the parity of \(\overline{C}_{4k,k}\).  相似文献   

5.
In a recent work, Andrews gave a definition of combinatorial objects which he called singular overpartitions and proved that these singular overpartitions, which depend on two parameters k and i, can be enumerated by the function \(\overline{C}_{k,i}(n) \) which denotes the number of overpartitions of n in which no part is divisible by k and only parts \(\equiv \pm i \ (\mathrm{mod}\ k)\) may be overlined. Andrews, Chen, Hirschhorn and Sellers, and Ahmed and Baruah discovered numerous congruences modulo 2, 3, 4, 8, and 9 for \(\overline{C}_{3,1}(n)\). In this paper, we prove a number of congruences modulo 16, 32, and 64 for \(\overline{C}_{3,1}(n)\).  相似文献   

6.
We consider \(\Delta _2(n)\), the number of broken 2-diamond partitions of n, and give simple proofs of two congruences given by Song Heng Chan.  相似文献   

7.
Let R be a unital commutative ring, and let M be an R-module that is generated by k elements but not less. Let \(\text {E}_n(R)\) be the subgroup of \(\text {GL}_n(R)\) generated by the elementary matrices. In this paper we study the action of \(\text {E}_n(R)\) by matrix multiplication on the set \(\text {Um}_n(M)\) of unimodular rows of M of length \(n \ge k\). Assuming R is moreover Noetherian and quasi-Euclidean, e.g., R is a direct product of finitely many Euclidean rings, we show that this action is transitive if \(n > k\). We also prove that \(\text {Um}_k(M) /\text {E}_k(R)\) is equipotent with the unit group of \(R/\mathfrak {a}_1\) where \(\mathfrak {a}_1\) is the first invariant factor of M. These results encompass the well-known classification of Nielsen non-equivalent generating tuples in finitely generated Abelian groups.  相似文献   

8.
Let \(\overline{A}_{\ell }(n)\) be the number of overpartitions of n into parts not divisible by \(\ell \). In a recent paper, Shen calls the overpartitions enumerated by the function \(\overline{A}_{\ell }(n)\) as \(\ell \)-regular overpartitions. In this paper, we find certain congruences for \(\overline{A}_{\ell }(n)\), when \(\ell =4, 8\), and 9. Recently, Andrews introduced the partition function \(\overline{C}_{k, i}(n)\), called singular overpartition, which counts the number of overpartitions of n in which no part is divisible by k and only parts \(\equiv \pm i\pmod {k}\) may be over-lined. He also proved that \(\overline{C}_{3, 1}(9n+3)\) and \(\overline{C}_{3, 1}(9n+6)\) are divisible by 3. In this paper, we prove that \(\overline{C}_{3, 1}(12n+11)\) is divisible by 144 which was conjectured to be true by Naika and Gireesh.  相似文献   

9.
Let \(\bar{p}(n)\) denote the number of overpartitions of n. Fortin et al. and Hirschhorn and Sellers established some congruences modulo powers of 2 for \(\bar{p}(n)\). Recently, Xia and Yao found several congruences modulo powers of 2 and 3. In particular, they proved that \(\bar{p}(96n+12)\equiv 0 \ (\mathrm{mod}\ 9)\) and \(\bar{p}(24n+19)\equiv 0\ (\mathrm{mod\ }27)\). In this paper, we generalize the two congruences and establish several new infinite families of congruences modulo 9 and 27 for \(\bar{p}(n)\). Furthermore, we prove some strange congruences modulo 9 and 27 for \(\bar{p}(n)\) by employing some results due to Cooper et al. For example, we prove that for \(k\ge 0\), \(\bar{p}(4^{k+1})\equiv 2^{k+3}+6(-1)^k\ (\mathrm{mod} \ 27) \) and \(\bar{p}\left( 7^{2k}\right) \equiv 2-2k\ (\mathrm{mod}\ 9)\). We also present two conjectures on congruences for \(\bar{p}(n)\).  相似文献   

10.
We study a random walk on a complex of finitely many half-lines joined at a common origin; jumps are heavy-tailed and of two types, either one-sided (towards the origin) or two-sided (symmetric). Transmission between half-lines via the origin is governed by an irreducible Markov transition matrix, with associated stationary distribution \(\mu _k\). If \(\chi _k\) is 1 for one-sided half-lines k and 1 / 2 for two-sided half-lines, and \(\alpha _k\) is the tail exponent of the jumps on half-line k, we show that the recurrence classification for the case where all \(\alpha _k \chi _k \in (0,1)\) is determined by the sign of \(\sum _k \mu _k \cot ( \chi _k \pi \alpha _k )\). In the case of two half-lines, the model fits naturally on \({{\mathbb {R}}}\) and is a version of the oscillating random walk of Kemperman. In that case, the cotangent criterion for recurrence becomes linear in \(\alpha _1\) and \(\alpha _2\); our general setting exhibits the essential nonlinearity in the cotangent criterion. For the general model, we also show existence and non-existence of polynomial moments of return times. Our moments results are sharp (and new) for several cases of the oscillating random walk; they are apparently even new for the case of a homogeneous random walk on \({{\mathbb {R}}}\) with symmetric increments of tail exponent \(\alpha \in (1,2)\).  相似文献   

11.
Denote by \({{\mathcal {G}}}_k(V)\) the Grassmannian of the k-subspaces of a vector space V over a field \({\mathbb {K}}\). There is a natural correspondence between hyperplanes H of \({\mathcal {G}}_k(V)\) and alternating k-linear forms on V defined up to a scalar multiple. Given a hyperplane H of \({{\mathcal {G}}_k}(V)\), we define a subspace \(R^{\uparrow }(H)\) of \({{\mathcal {G}}_{k-1}}(V)\) whose elements are the \((k-1)\)-subspaces A such that all k-spaces containing A belong to H. When \(n-k\) is even, \(R^{\uparrow }(H)\) might be empty; when \(n-k\) is odd, each element of \({\mathcal {G}}_{k-2}(V)\) is contained in at least one element of \(R^{\uparrow }(H)\). In the present paper, we investigate several properties of \(R^{\uparrow }(H)\), settle some open problems and propose a conjecture.  相似文献   

12.
We consider the class \(\Sigma (p)\) of univalent meromorphic functions f on \({\mathbb D}\) having a simple pole at \(z=p\in [0,1)\) with residue 1. Let \(\Sigma _k(p)\) be the class of functions in \(\Sigma (p)\) which have k-quasiconformal extension to the extended complex plane \({\hat{\mathbb C}}\), where \(0\le k < 1\). We first give a representation formula for functions in this class and using this formula, we derive an asymptotic estimate of the Laurent coefficients for the functions in the class \(\Sigma _k(p)\). Thereafter, we give a sufficient condition for functions in \(\Sigma (p)\) to belong to the class \(\Sigma _k(p).\) Finally, we obtain a sharp distortion result for functions in \(\Sigma (p)\) and as a consequence, we obtain a distortion estimate for functions in \(\Sigma _k(p).\)  相似文献   

13.
Let E be a Banach lattice with a 1-unconditional basis \(\{e_i: i \in \mathbb {N}\}\). Denote by \(\Delta (\check{\otimes }_{n,\epsilon }E)\) (resp. \(\Delta (\check{\otimes }_{n,s,\epsilon }E)\)) the main diagonal space of the n-fold full (resp. symmetric) injective Banach space tensor product, and denote by \(\Delta (\check{\otimes }_{n,|\epsilon |}E)\) (resp. \(\Delta (\check{\otimes }_{n,s,|\epsilon |}E)\)) the main diagonal space of the n-fold full (resp. symmetric) injective Banach lattice tensor product. We show that these four main diagonal spaces are pairwise isometrically isomorphic. We also show that the tensor diagonal \(\{e_i\otimes \cdots \otimes e_i: i \in \mathbb {N}\}\) is a 1-unconditional basic sequence in both \(\check{\otimes }_{n,\epsilon }E\) and \(\check{\otimes }_{n,s,\epsilon }E\).  相似文献   

14.
Let \(S_k(N)\) be the space of all holomorphic cusp forms of even integral weight k for the congruence group \(\varGamma _0(N).\) For any \(f\in S_k(N)\) with \(\Vert f\Vert _2=1,\) we study the higher-power moments of \(\sum _{n\le x}a_f(n),\) where \(a_f(n)\) is the nth normalized Fourier coefficient of f. Furthermore, as an application, we investigate the higher-power moments of Fourier coefficients in arithmetic progressions.  相似文献   

15.
For nonnegative integers qnd, let \(A_q(n,d)\) denote the maximum cardinality of a code of length n over an alphabet [q] with q letters and with minimum distance at least d. We consider the following upper bound on \(A_q(n,d)\). For any k, let \(\mathcal{C}_k\) be the collection of codes of cardinality at most k. Then \(A_q(n,d)\) is at most the maximum value of \(\sum _{v\in [q]^n}x(\{v\})\), where x is a function \(\mathcal{C}_4\rightarrow {\mathbb {R}}_+\) such that \(x(\emptyset )=1\) and \(x(C)=\!0\) if C has minimum distance less than d, and such that the \(\mathcal{C}_2\times \mathcal{C}_2\) matrix \((x(C\cup C'))_{C,C'\in \mathcal{C}_2}\) is positive semidefinite. By the symmetry of the problem, we can apply representation theory to reduce the problem to a semidefinite programming problem with order bounded by a polynomial in n. It yields the new upper bounds \(A_4(6,3)\le 176\), \(A_4(7,3)\le 596\), \(A_4(7,4)\le 155\), \(A_5(7,4)\le 489\), and \(A_5(7,5)\le 87\).  相似文献   

16.
Let \(\overline{p}(n)\) denote the number of overpartitions of n. Recently, congruences modulo powers of 2 for \(\overline{p}(n)\) were widely studied. In this paper, we prove several new infinite families of congruences modulo powers of 2 for \(\overline{p}(n)\). For example, for \(\alpha \ge 1\) and \(n\ge 0\),
$$\begin{aligned} \overline{p}(8\cdot 3^{4\alpha +4}n+5\cdot 3^{4\alpha +3})\equiv 0 \quad (\mathrm{mod}\,\,{2^8}). \end{aligned}$$
  相似文献   

17.
Denote by \(C_m\) the cyclic group of order m. Let \({\mathcal {R}}(C_m)\) be its real representation ring, and \(\Delta (C_m)\) its augmentation ideal. In this paper, we give an explicit \({\mathbb {Z}}\)-basis for the n-th power \(\Delta ^{n}(C_m)\) and determine the isomorphism class of the n-th augmentation quotient \(\Delta ^n(C_m)/\Delta ^{n+1}(C_m)\) for each positive integer n.  相似文献   

18.
For positive integers nk with \(3\le k\le n\), let \(X=\mathbb {F}_{2^n}\setminus \{0,1\}\), \({\mathcal {G}}=\{\{x,x+1\}:x\in X\}\), and \({\mathcal {B}}_k=\left\{ \{x_1,x_2,\ldots ,x_k\}\!\subset \!X:\sum \limits _{i=1}^kx_i=1,\ \sum \limits _{i\in I}x_i\!\ne \!1\ \mathrm{for\ any}\ \emptyset \!\ne \!I\!\subsetneqq \!\{1,2,\ldots ,k\}\right\} \). Lee et al. used the inclusion–exclusion principle to show that the triple \((X,{\mathcal {G}},{\mathcal {B}}_k)\) is a \((k,\lambda _k)\)-GDD of type \(2^{2^{n-1}-1}\) for \(k\in \{3,4,5,6,7\}\) where \(\lambda _k=\frac{\prod _{i=3}^{k-1}(2^n-2^i)}{(k-2)!}\) (Lee et al. in Des Codes Cryptogr,  https://doi.org/10.1007/s10623-017-0395-8, 2017). They conjectured that \((X,{\mathcal {G}},{\mathcal {B}}_k)\) is also a \((k,\lambda _k)\)-GDD of type \(2^{2^{n-1}-1}\) for any integer \(k\ge 8\). In this paper, we use a similar construction and counting principles to show that there is a \((k,\lambda _k)\)-GDD of type \((q^2-q)^{(q^{n-1}-1)/(q-1)}\) for any prime power q and any integers kn with \(3\le k\le n\) where \(\lambda _k=\frac{\prod _{i=3}^{k-1}(q^n-q^i)}{(k-2)!}\). Consequently, their conjecture holds. Such a method is also generalized to yield a \((k,\lambda _k)\)-GDD of type \((q^{\ell +1}-q^{\ell })^{(q^{n-\ell }-1)/(q-1)}\) where \(\lambda _k=\frac{\prod _{i=3}^{k-1}(q^n-q^{\ell +i-1})}{(k-2)!}\) and \(k+\ell \le n+1\).  相似文献   

19.
The packing chromatic number \(\chi _{\rho }(G)\) of a graph G is the smallest integer k such that the vertex set of G can be partitioned into sets \(V_i\), \(i\in [k]\), where each \(V_i\) is an i-packing. In this paper, we investigate for a given triple (abc) of positive integers whether there exists a graph G such that \(\omega (G) = a\), \(\chi (G) = b\), and \(\chi _{\rho }(G) = c\). If so, we say that (abc) is realizable. It is proved that \(b=c\ge 3\) implies \(a=b\), and that triples \((2,k,k+1)\) and \((2,k,k+2)\) are not realizable as soon as \(k\ge 4\). Some of the obtained results are deduced from the bounds proved on the packing chromatic number of the Mycielskian. Moreover, a formula for the independence number of the Mycielskian is given. A lower bound on \(\chi _{\rho }(G)\) in terms of \(\Delta (G)\) and \(\alpha (G)\) is also proved.  相似文献   

20.
Let H be a Krull monoid with finite class group G such that every class contains a prime divisor. Then every non-unit \(a \in H\) can be written as a finite product of atoms, say \(a=u_1 \cdot \ldots \cdot u_k\). The set \(\mathsf L (a)\) of all possible factorization lengths k is called the set of lengths of a. There is a constant \(M \in \mathbb N\) such that all sets of lengths are almost arithmetical multiprogressions with bound M and with difference \(d \in \Delta ^* (H)\), where \(\Delta ^* (H)\) denotes the set of minimal distances of H. We study the structure of \(\Delta ^* (H)\) and establish a characterization when \(\Delta ^*(H)\) is an interval. The system \(\mathcal L (H) = \{ \mathsf L (a) \mid a \in H \}\) of all sets of lengths depends only on the class group G, and a standing conjecture states that conversely the system \(\mathcal L (H)\) is characteristic for the class group. We confirm this conjecture (among others) if the class group is isomorphic to \(C_n^r\) with \(r,n \in \mathbb N\) and \(\Delta ^*(H)\) is not an interval.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号