首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The ternary rare earth compound NdRh4B4 has been studied by means of critical field, low temperature heat capacity, and static magnetic susceptibility measurements. Features in the upper critical field and heat capacity data at 1.31 K and 0.89 K suggest the occurrence of long-range magnetic order in the superconducting state. The temperature dependence of the static magnetic susceptibility follows a Curie-Weiss law with an effective magnetic moment μeff = 3.58 ± 0.05 μB and a Curie-Weiss temperature θp = ?6.2 ± 1.0 K between 20 K and room temperature. However,, magnetization vs. applied magnetic field isotherms suggest the development of a ferromagnetic component in the Nd3+ magnetization at low temperatures.  相似文献   

2.
Measurements of magnetic susceptibility χ, in the temperature range from 2 to 300 K, and of magnetization M vs. applied magnetic field B, up to 5 T, at various temperatures were made on polycrystalline samples of the Mn2GeTe4 compound. It was found that Mn2GeTe4 has a Néel temperature TN of about 135 K, shows mainly antiferromagnetic behavior with a very weak superimposed ferromagnetic component that is attributed to spin canting. Also, the magnetic results suggest that a possible spin-glass transition takes place at Tf≈45 K. The spin-glass order parameter q(T), determined from the susceptibility data, was found to be in agreement with the prediction of conventional spin-glass theory. The M vs. B results indicated that bound magnetic polarons (BMPs) occur in the compound, and that the effects from BMPs disappear at approximately 80 K. The M vs. B curves were well fitted by a Langevin type of equation, and the variation of the fitting parameters determined as a function of temperature. Using a simple spherical model, the radius of the BMP in the material was found to be about 27 Å; this value is similar to the effective Bohr radius for an acceptor in the II-IV-V2 and I-III-VI2 ternary semiconductor compounds.  相似文献   

3.
Magnetization and susceptibility were investigated as a function of temperature and magnetic field in polycrystalline Mn[Cr0.5Ga1.5]S4 spinel. The dc susceptibility measurements at 919 Oe showed a disordered ferrimagnetic behaviour with a Curie-Weiss temperature θCW=−55 K and an effective magnetic moment of 5.96 μB close to the spin-only value of 6.52 μB for Cr3+ and Mn2+ ions in the 3d3 and 3d5 configurations, respectively. The magnetization measured at 100 Oe revealed the multiple magnetic transitions with a sharp maximum at the Néel temperature TN=3.9 K, a minimum at the Yafet-Kittel temperature TYK=5 K, a broad maximum at the freezing temperature Tf=7.9 K, and an inflection point at the Curie temperature TC=48 K indicating a transition to paramagnetic phase. A large splitting between the zero-field-cooled (ZFC) and field-cooled (FC) magnetizations at a temperature smaller than TC suggests the presence of spin-glass-like behaviour. This behaviour is considered in a framework of competing interactions between the antiferromagnetic ordering of the A(Mn) sublattice and the ferromagnetic ordering of the B(Cr) sublattice.  相似文献   

4.
The magnetic structure of the rare earth tetraboride TbB4 (crystallographic space group P4/mbm) has been determined by neutron diffraction on a polycrystalline sample. Below the experimentally determined Néel temperature of TN = (43±1) K TbB4 is ordered antiferromagnetically. The data refinement yielded a magnetic moment value of (7.7 ± 0.2) μB/Tb ion at 4.2 K which we interpret as Tb4+. The magnetic structure is antiferromagnetic collinear with the moments perpendicular to the tetragonal axis.  相似文献   

5.
6.
A neutron powder diffraction study of 239PuD2.25 compound was performed at different temperatures, in order to determine the deuterium atoms positions and to study the occurrence of structural and magnetic phase transitions. Vacancies of tetrahedral sites were found together with partial occupancy of octahedral special positions. No order disorder transitions were observed at low temperature. Below T = 60 K PuD2.25 becomes ferromagnetically ordered with an ordered magnetic moment μord = 0.8 μB per Pu atom.  相似文献   

7.
Magnetic and magnetocaloric properties of the compound Ce5Ge4 have been studied. This compound has orthorhombic Sm5Ge4-type structure (space group Pnma, no. 62) and orders ferromagnetically at ~12 K (TC). The paramagnetic Curie temperature is ~−20 K suggesting the presence of competing ferromagnetic and antiferromagnetic interactions in this compound. The magnetization does not seem to saturate even in fields of 90 kOe at 3 K consistent with the presence of competing interactions. Saturation magnetization value (extrapolated to 1/H→0) of only 0.8μB/Ce3+ is obtained compared to the free ion value of 2.14μB/Ce3+. This moment reduction in the ordered state of Ce5Ge4 could be due to partial antiferromagnetic/paramagnetic ordering of the Ce moments and may also be due to crystalline electric field effects. Magnetic entropy change near TC, calculated from the magnetization vs. field data, is found to be moderate with a maximum value of ~9 J/kg/K at ~11 K for a field change of 90 kOe.  相似文献   

8.
We report on large negative magnetoresistance observed in ferromagnetic thiospinel compound CuCrZrS4. The electrical resistivity increased with decreasing temperature according to the exp(T0/T)1/2, an expression derived from variable range hopping with strong electron-electron interaction. The resistivity under a magnetic field was expressed by the same form with the characteristic temperature T0 decreasing with increasing magnetic field. Magnetoresistance ratio ρ(T,0)/ρ(T,H) is 1.5 for H=90 kOe at 100 K and increases divergently with decreasing temperature reaching 80 at 16 K. Results of magnetization measurements are also presented. A possible mechanism of the large magnetoresistance is discussed.  相似文献   

9.
Structural, magnetic and hyperfine interaction measurements have been carried out on the novel compound La3.5Ru4O13 prepared under two different atmospheres (air and oxygen flow). This compound is formed in the orthorhombic structure (space group Pmmm, # 47). The coexistence of the triple-layered perovskite-type planes (quasi-2D structure) and the rutile-like slabs (1D structure) leads to interesting magnetic and electronic properties in this compound. The magnetic susceptibility of this system shows a peak at T~47 K associated with antiferromagnetic interactions. The Curie-Weiss behaviour of the susceptibility provides an effective magnetic moment consistent with Ru ions in low-spin state. Perturbed angular correlation measurements carried out with 111Cd probe in the temperature range 10-60 K reveal only quadrupole interactions and indicate the occurrence of structural distortions for T<40 K.  相似文献   

10.
Magnetization and susceptibility data on PrCo2 and PrCo2H4 are presented. The ac susceptibility of PrCo2 measured in zero dc field displays a sharp and high peak at Tc = (39.9 ± 0.2) K. The magnetization versus temperature curves show ferromagnetic behaviour for B >1 T, but display a maximum at lower values of the applied field. These results, together with the behaviour of the hysteresis loops at different temperatures below Tc, indicate that PrCo2 orders ferromagnetically, the magnetic hardness increasing strongly for T → 0. The saturation moment at 4.2 K equals 3.9 μB per formula unit, as found from the magnetization curve measured in a pulsed-field magnet up to B = 30 T.Similar experiments on PrCo2H4 provide evidence that the introduction of hydrogen in PrCo2 not only destroys the long-range atomic order, but also considerably reduces the ferromagnetic interactions. Such an effect of the hydrogen is commonly observed in cobalt intermetallics. Part of the PrCo2H4 is found to have decomposed into PrH2 and free Co. The clusters of free Co atoms give rise to a maximum in the zero-field ac susceptibility versus temperature curves, similar as observed in spin glasses or magnetic glasses. By increasing the ac frequency, the maximum shifts to higher temperatures. The behavior can be explained in terms of the Néel model for superparamagnetic particles with randomly oriented local anisotropy axes.  相似文献   

11.
The 57Fe Mössbauer spectroscopy of mononuclear [Fe(II)(isoxazole)6](ClO4)2 has been studied to reveal the thermal spin crossover of Fe(II) between low-spin (S=0) and high-spin (S=2) states. Temperature-dependent spin transition curves have been constructed with the least-square fitted data obtained from the Mössbauer spectra measured at various temperatures between 84 and 270 K during a cooling and heating cycle. This compound exhibits an unusual temperature-dependent spin transition behaviour with TC(↓)=223 and TC(↑)=213 K occurring in the reverse order in comparison to those observed in SQUID observation and many other spin transition compounds. The compound has three high-spin Fe(II) sites at the highest temperature of study of which two undergo spin transitions. The compound seems to undergo a structural phase transition around the spin transition temperature, which plays a significant role in the spin crossover behaviour as well as the magnetic properties of the compound at temperatures below TC. The present study reveals an increase in high-spin fraction upon heating in the temperature range below TC, and an explanation is provided.  相似文献   

12.
We have performed 169Tm and 161Dy Mössbauer spectroscopy on TmFe4Al8 and DyFe4Al8. From the temperature dependence of the electric quadrupole splitting of the 169Tm spectra of TmFe4Al8 we have determined the second order crystal field potential V02 = (100 ± 10) K and the exchange field term gJμBHM = (1 ± 1) K. The temperature dependence of the hyperfine field of the 161Dy spectrum of DyFe4Al8 gives gJμBHM = (15 ± 3) K. With these exchange fields magnetic transition temperatures of the rare earth sublattices were found, which are consistent with experiment. The relaxation behaviour of the Tm sublattice below TN = 187 K is discussed.  相似文献   

13.
The magnetic properties of crystals of tetragonal LiTbF4 are reported for the first time. A transition to an uniaxial, high-anisotropy, ferromagnetic state is observed at Tc = 2.86 ± 0.03 K. The saturation moment is 8.90 ± 0.03 μB, close to the theoretical maximum of 9 μB for Tb3+. Magnetic dipolar interactions are shown to be large, and the effects of crystal fields are discussed.  相似文献   

14.
Measurements of magnetic susceptibility χ as a function of temperature T and of magnetisation M as a function of applied magnetic field H at a number of fixed temperatures were made on polycrystalline samples of Cu2FeGeSe4. The χ versus T data show that an antiferromagnetic transition occurs at 20 K and that a second transition occurs at 8 K, indicating a transition to weak ferromagnetic form. The M versus H curves indicated that at all temperatures below 70 K bound magnetic polarons (BMP) occur, in the paramagnetic, antiferromagnetic and weak ferromagnetic ranges. Below 8 K, the M versus H curves exhibited magnetic hysteresis, and this is attributed to the interaction of the BMPs with tetragonally anisotropic matrix. The B versus H curves were well fitted by a Langevin-type of equation, and the variation of the fitting parameters determined as a function of temperature. These showed that above 20 K the total BMP magnetisation fell almost linearly with increasing temperature and effectively disappeared at 70 K. The number of BMPs remained practically constant with temperature having a mean value of 6.55×1018/cm3. The analysis gave a value of 213 μB for the average magnetic moment of a BMP, corresponding to 42.4 Fe atoms. Using a simple spherical model, this gives the radius of a BMP as 12.0 Å.  相似文献   

15.
Neutron diffraction studies of polycrystalline PrCo2Si2 and TbCo2Si2 compounds were carried out at 4.2 and 293 K. Both samples have collinear antiferromagnetic order below TN(31(1) and 46(1) K for Pr and Tb compound respectively), with their magnetic moments parallel to the c axis. The ordered magnetic moment values of Pr and Tb at 4.2 K (3.19 and 9.12 μB respectively), are close to the saturation value of the free ions. The corresponding magnetic space group Pl4/mnc (Sh410128) is body-anticentered (k = 111222 refering to Pl cell).  相似文献   

16.
We have investigated the magnetic and dielectric properties of polycrystalline samples of the spinel MnCr2O4. Below the ferrimagnetic ordering temperature at TN∼43 K, both magnetization and dielectric measurements show signatures of the onset of a conical structure at Ts∼17 K and a lock-in temperature at Tf∼14 K. These values are similar to those previously reported for single-crystal samples, where the spiral structure is short-range ordered (SRO) at low temperatures. The application of magnetic field suppresses the dielectric anomaly at Tf indicating that the coherence length of the ordering increases. MnCr2O4 exhibits a symmetrical magnetodielectric response between Tf and Ts that scales with the square of the magnetization. This suggests that the magnetodielectric coupling originates from the P2M2 term in the free energy expansion. The magnetodielectric response becomes asymmetric with respect to field below Tf.  相似文献   

17.
In the isostructural cyanobridged chain compounds N(CH3)4MnIIMIII(CN)6 · 8H2O high spin Mn(II) ions couple antiferromagnetically to low spin Mn(III) of Fe(III) ions. The MnII–MnIII compound orders ferrimagnetically below TN = 28.5 ± 1 K. The tetragonal a and b axes are easy ones for the magnetic moments. In the MnII–FeIII compound antiferromagnetic order occurs below TN = 9.3 K, with spins aligned along the tetragonal c axis. The compound undergoes a meta-magnetic transition from the antiferromagnetic to a ferrimagnetic phase. This occurs at 2 K for a field Hcrit ≈ 1.2 T. The temperature dependence of Hcrit, which vanishes at TN, is followed. The tricritical temperature T1 is ~ 5 K.  相似文献   

18.
We have attempted to characterize the magnetic and electrical properties of a new mixed-metal molecular material {NBu4[Ni(II)0.5Fe(II)0.5Fe(III)(ox)3]}N synthesized by the use of trioxalatoferrate as the building block. Mössbauer spectroscopy was utilized in order to understand local spin structures in this compound. The results indicate that the compound is a semiconducting ferrimagnet with TN=30 K and room temperature conductivity of 6×10−15 Ω−1 cm−1 along with 1.8 eV activation energy under dark. The compound has no appreciable electrical response towards illumination.  相似文献   

19.
The magnetic, electrical and electronic properties of the tetragonal ternary YbFe4Al8 compound have been investigated. This compound was supposed to be an antiferromagnetic superconductor due to the negative magnetization signal appearing at a low field of the field cooling mode, however, based on the measurements of the temperature dependence of magnetization and resistivity we do not confirm the presence of superconductivity in this material and we ascribe the negative magnetization to the complicated non-collinear magnetic structure. A switch to the antiferromagnetic order at about 150 K has been visible both on the M(T) and ρ(T) curves. The valence state of the Yb ions has been studied by X-ray photoemission spectroscopy. The valence band spectrum at the Fermi level exhibits the domination of the hybridized Yb(4f) and Fe(3d) states.  相似文献   

20.
Considering certain interesting features in the previously reported 166Er Mössbauer effect, and neutron diffraction data on the polycrystalline form of ErPd2Si2 crystallizing in the ThCr2Si2-type tetragonal structure, we have carried out magnetic measurements (1.8–300 K) on the single crystalline form of this compound. We observe significant anisotropy in the absolute values of magnetization (indicating that the easy axis is c-axis) as well as in features due to magnetic ordering in the plot of magnetic susceptibility χ versus temperature T at low temperatures. The χ(T) data reveal that there is a pseudo-low-dimensional magnetic order setting in at 4.8 K, with a three-dimensional antiferromagnetic order setting in at a lower temperature (3.8 K). A new finding in the χ(T) data is that, for H∥〈1 1 0〉 but not for H∥〈0 0 1〉, there is a broad shoulder in the range 8–20 K, indicative of the existence of magnetic correlations above 5 K as well, which could be related to the previously reported slow-relaxation-dominated Mössbauer spectra. Interestingly, the temperature coefficient of electrical resistivity is found to be isotropic; no feature due to magnetic ordering could be detected in the electrical resistivity data at low temperatures, which is attributed to magnetic Brillioun-zone boundary gap effects. The results reveal the complex nature of magnetism of this compound.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号