首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Let \({\{\varphi_n(z)\}_{n\ge0}}\) be a sequence of inner functions satisfying that \({\zeta_n(z):=\varphi_n(z)/\varphi_{n+1}(z)\in H^\infty(z)}\) for every n ≥ 0 and \({\{\varphi_n(z)\}_{n\ge0}}\) have no nonconstant common inner divisors. Associated with it, we have a Rudin type invariant subspace \({\mathcal{M}}\) of \({H^2(\mathbb{D}^2)}\) . We write \({\mathcal{N}= H^2(\mathbb{D}^2)\ominus\mathcal{M}}\) . If \({\{\zeta_n(z)\}_{n\ge0}}\) ia a mutually prime sequence, then we shall prove that \({rank_{\{T^\ast_z,T^\ast_w\}} \mathcal{N}=1}\) and \({rank_{\{\mathcal{F}^\ast_z\}}(\mathcal{M}\ominus w\mathcal{M})=1}\) , where \({\mathcal{F}_z}\) is the fringe operator on \({\mathcal{M}\ominus w\mathcal{M}}\) .  相似文献   

2.
In this paper, we investigate solutions of the hyperbolic Poisson equation \(\Delta _{h}u(x)=\psi (x)\), where \(\psi \in L^{\infty }(\mathbb {B}^{n}, {\mathbb R}^n)\) and
$$\begin{aligned} \Delta _{h}u(x)= (1-|x|^2)^2\Delta u(x)+2(n-2)\left( 1-|x|^2\right) \sum _{i=1}^{n} x_{i} \frac{\partial u}{\partial x_{i}}(x) \end{aligned}$$
is the hyperbolic Laplace operator in the n-dimensional space \(\mathbb {R}^n\) for \(n\ge 2\). We show that if \(n\ge 3\) and \(u\in C^{2}(\mathbb {B}^{n},{\mathbb R}^n) \cap C(\overline{\mathbb {B}^{n}},{\mathbb R}^n )\) is a solution to the hyperbolic Poisson equation, then it has the representation \(u=P_{h}[\phi ]-G_{ h}[\psi ]\) provided that \(u\mid _{\mathbb {S}^{n-1}}=\phi \) and \(\int _{\mathbb {B}^{n}}(1-|x|^{2})^{n-1} |\psi (x)|\,d\tau (x)<\infty \). Here \(P_{h}\) and \(G_{h}\) denote Poisson and Green integrals with respect to \(\Delta _{h}\), respectively. Furthermore, we prove that functions of the form \(u=P_{h}[\phi ]-G_{h}[\psi ]\) are Lipschitz continuous.
  相似文献   

3.
We present the generating function for \(c\phi _6(n)\), the number of generalized Frobenius partitions of \(n\) with \(6\) colors, in terms of Ramanujan’s theta functions and exhibit \(2\), and \(3\)-dissections of it that yield the congruences \(c\phi _6(2n+1)\equiv 0~(\text {mod}~4)\), \(c\phi _6(3n+1)\equiv 0~(\text {mod}~3^2)\) and \(c\phi _6(3n+2)\equiv 0~(\text {mod}~3^2)\).  相似文献   

4.
Let\(B_{2}^{n}\) denote the Euclidean ball in\({\mathbb R}^n\), and, given closed star-shaped body\(K \subset {\mathbb R}^{n}, M_{K}\) denote the average of the gauge of K on the Euclidean sphere. Let\(p \in (0,1)\) and let\(K \subset {\mathbb R}^{n}\) be a p-convex body. In [17] we proved that for every\(\lambda \in (0,1)\) there exists an orthogonal projection P of rank\((1 - \lambda)n\) such that
$\frac{f(\lambda)}{M_K} PB^{n}_{2} \subset PK,$
where\(f(\lambda)=c_p\lambda^{1+1/p}\) for some positive constant c p depending on p only. In this note we prove that\(f(\lambda)\) can be taken equal to\(C_p\lambda^{1/p-1/2}\). In terms of Kolmogorov numbers it means that for every\(k \leq n\)
$d_k (\hbox{Id}:\ell^{n}_{2} \to ({\mathbb R}^{n},\|\cdot\|_{K})) \leq C_p \frac{n^{1/p-1}}{k^{1/p-1/2}} \ell(\hbox{ID}: \ell^{n}_{2} \to ({\mathbb R}^{n}, \|\cdot\|_{K})),$
where\(\ell(\hbox{Id})={\bf E}\|\sum\limits^{n}_{i=1}g_i e_i\|_K\) for the independent standard Gaussian random variables\(\{g_i\}\) and the canonical basis\(\{e_i\}\) of\({\mathbb R}^n\). All results do not require the symmetry of K.
  相似文献   

5.
We consider the positive solutions of the nonlinear eigenvalue problem \(-\Delta _{\mathbb {H}^n} u = \lambda u + u^p, \) with \(p=\frac{n+2}{n-2}\) and \(u \in H_0^1(\Omega ),\) where \(\Omega \) is a geodesic ball of radius \(\theta _1\) on \(\mathbb {H}^n.\) For radial solutions, this equation can be written as an ordinary differential equation having n as a parameter. In this setting, the problem can be extended to consider real values of n. We show that if \(2<n<4\) this problem has a unique positive solution if and only if \(\lambda \in \left( n(n-2)/4 +L^*\,,\, \lambda _1\right) .\) Here \(L^*\) is the first positive value of \(L = -\ell (\ell +1)\) for which a suitably defined associated Legendre function \(P_{\ell }^{-\alpha }(\cosh \theta ) >0\) if \(0 < \theta <\theta _1\) and \(P_{\ell }^{-\alpha }(\cosh \theta _1)=0,\) with \(\alpha = (2-n)/2\).  相似文献   

6.
We investigate Weyl type asymptotics of functional-difference operators associated to mirror curves of special del Pezzo Calabi-Yau threefolds. These operators are \({H(\zeta) = U + U^{-1} + V + \zeta V^{-1}}\) and \({H_{m,n} = U + V + q^{-mn}U^{-m}V^{-n}}\), where \({U}\) and \({V}\) are self-adjoint Weyl operators satisfying \({UV = q^{2}VU}\) with \({q = {\rm e}^{{\rm i}\pi b^{2}}}\), \({b > 0}\) and \({\zeta > 0}\), \({m, n \in \mathbb{N}}\). We prove that \({H(\zeta)}\) and \({H_{m,n}}\) are self-adjoint operators with purely discrete spectrum on \({L^{2}(\mathbb{R})}\). Using the coherent state transform we find the asymptotical behaviour for the Riesz mean \({\sum_{j\ge 1}(\lambda - \lambda_{j})_{+}}\) as \({\lambda \to \infty}\) and prove the Weyl law for the eigenvalue counting function \({N(\lambda)}\) for these operators, which imply that their inverses are of trace class.  相似文献   

7.
Let \(n\ge 2\) and \(g_{\lambda }^{*}\) be the well-known high-dimensional Littlewood–Paley function which was defined and studied by E. M. Stein,
$$\begin{aligned} g_{\lambda }^{*}(f)(x) =\bigg (\iint _{\mathbb {R}^{n+1}_{+}} \Big (\frac{t}{t+|x-y|}\Big )^{n\lambda } |\nabla P_tf(y,t)|^2 \frac{\mathrm{d}y \mathrm{d}t}{t^{n-1}}\bigg )^{1/2}, \ \quad \lambda > 1, \end{aligned}$$
where \(P_tf(y,t)=p_t*f(y)\), \(p_t(y)=t^{-n}p(y/t)\), and \(p(x) = (1+|x|^2)^{-(n+1)/2}\), \(\nabla =(\frac{\partial }{\partial y_1},\ldots ,\frac{\partial }{\partial y_n},\frac{\partial }{\partial t})\). In this paper, we give a characterization of two-weight norm inequality for \(g_{\lambda }^{*}\)-function. We show that \(\big \Vert g_{\lambda }^{*}(f \sigma ) \big \Vert _{L^2(w)} \lesssim \big \Vert f \big \Vert _{L^2(\sigma )}\) if and only if the two-weight Muckenhoupt \(A_2\) condition holds, and a testing condition holds:
$$\begin{aligned} \sup _{Q : \text {cubes}~\mathrm{in} \ {\mathbb {R}^n}} \frac{1}{\sigma (Q)} \int _{{\mathbb {R}^n}} \iint _{\widehat{Q}} \Big (\frac{t}{t+|x-y|}\Big )^{n\lambda }|\nabla P_t(\mathbf {1}_Q \sigma )(y,t)|^2 \frac{w \mathrm{d}x \mathrm{d}t}{t^{n-1}} \mathrm{d}y < \infty , \end{aligned}$$
where \(\widehat{Q}\) is the Carleson box over Q and \((w, \sigma )\) is a pair of weights. We actually prove this characterization for \(g_{\lambda }^{*}\)-function associated with more general fractional Poisson kernel \(p^\alpha (x) = (1+|x|^2)^{-{(n+\alpha )}/{2}}\). Moreover, the corresponding results for intrinsic \(g_{\lambda }^*\)-function are also presented.
  相似文献   

8.
Let \({\Omega}\) be a Lipschitz bounded domain of \({\mathbb{R}^N}\), \({N\geq2}\), and let \({u_p\in W_0^{1,p}(\Omega)}\) denote the p-torsion function of \({\Omega}\), p > 1. It is observed that the value 1 for the Cheeger constant \({h(\Omega)}\) is threshold with respect to the asymptotic behavior of up, as \({p\rightarrow 1^+}\), in the following sense: when \({h(\Omega) > 1}\), one has \({\lim_{p\rightarrow 1^+}\left\|u_{p}\right\| _{L^\infty(\Omega)}=0}\), and when \({h(\Omega) < 1}\), one has \({\lim_{p\rightarrow 1^+}\left\|u_p\right\| _{L^\infty(\Omega)}=\infty}\). In the case \({h(\Omega)=1}\), it is proved that \({\limsup_{p\rightarrow1^+}\left\|u_p\right\|_{L^\infty(\Omega)}<\infty}\). For a radial annulus \({\Omega_{a,b}}\), with inner radius a and outer radius b, it is proved that \({\lim_{p\rightarrow 1^+}\left\|u_p\right\| _{L^\infty(\Omega_{a,b})}=0}\) when \({h(\Omega_{a,b})=1}\).  相似文献   

9.
Denoising has to do with estimating a signal \(\mathbf {x}_0\) from its noisy observations \(\mathbf {y}=\mathbf {x}_0+\mathbf {z}\). In this paper, we focus on the “structured denoising problem,” where the signal \(\mathbf {x}_0\) possesses a certain structure and \(\mathbf {z}\) has independent normally distributed entries with mean zero and variance \(\sigma ^2\). We employ a structure-inducing convex function \(f(\cdot )\) and solve \(\min _\mathbf {x}\{\frac{1}{2}\Vert \mathbf {y}-\mathbf {x}\Vert _2^2+\sigma {\lambda }f(\mathbf {x})\}\) to estimate \(\mathbf {x}_0\), for some \(\lambda >0\). Common choices for \(f(\cdot )\) include the \(\ell _1\) norm for sparse vectors, the \(\ell _1-\ell _2\) norm for block-sparse signals and the nuclear norm for low-rank matrices. The metric we use to evaluate the performance of an estimate \(\mathbf {x}^*\) is the normalized mean-squared error \(\text {NMSE}(\sigma )=\frac{{\mathbb {E}}\Vert \mathbf {x}^*-\mathbf {x}_0\Vert _2^2}{\sigma ^2}\). We show that NMSE is maximized as \(\sigma \rightarrow 0\) and we find the exact worst-case NMSE, which has a simple geometric interpretation: the mean-squared distance of a standard normal vector to the \({\lambda }\)-scaled subdifferential \({\lambda }\partial f(\mathbf {x}_0)\). When \({\lambda }\) is optimally tuned to minimize the worst-case NMSE, our results can be related to the constrained denoising problem \(\min _{f(\mathbf {x})\le f(\mathbf {x}_0)}\{\Vert \mathbf {y}-\mathbf {x}\Vert _2\}\). The paper also connects these results to the generalized LASSO problem, in which one solves \(\min _{f(\mathbf {x})\le f(\mathbf {x}_0)}\{\Vert \mathbf {y}-{\mathbf {A}}\mathbf {x}\Vert _2\}\) to estimate \(\mathbf {x}_0\) from noisy linear observations \(\mathbf {y}={\mathbf {A}}\mathbf {x}_0+\mathbf {z}\). We show that certain properties of the LASSO problem are closely related to the denoising problem. In particular, we characterize the normalized LASSO cost and show that it exhibits a “phase transition” as a function of number of observations. We also provide an order-optimal bound for the LASSO error in terms of the mean-squared distance. Our results are significant in two ways. First, we find a simple formula for the performance of a general convex estimator. Secondly, we establish a connection between the denoising and linear inverse problems.  相似文献   

10.
Let \(X, X_{1}, X_{2}, \ldots \) be i.i.d. random variables, and set \(S_{n}=X_{1}+\cdots +X_{n}\) and \( V_{n}^{2}=X_{1}^{2}+\cdots +X_{n}^{2}.\) Without any moment conditions on \(X\), assuming that \(\{S_{n}/V_{n}\}\) is tight, we establish convergence of series of the type (*) \(\sum \nolimits _{n}w_{n}P(\left| S_{n}\right| /V_{n}\ge \varepsilon b_{n}),\) \(\varepsilon >0.\) Then, assuming that \(X\) is symmetric and belongs to the domain of attraction of a stable law, and choosing \(w_{n}\) and \(b_{n}\) suitably\(,\) we derive the precise asymptotic behavior of the series (*) as \(\varepsilon \searrow 0. \)  相似文献   

11.
Let n and s be integers such that \(1\le s<\frac{n}{2}\), and let \(M_n(\mathbb {K})\) be the ring of all \(n\times n\) matrices over a field \(\mathbb {K}\). Denote by \([\frac{n}{s}]\) the least integer m with \(m\ge \frac{n}{s}\). In this short note, it is proved that if \(g:M_n(\mathbb {K})\rightarrow M_n(\mathbb {K})\) is a map such that \(g\left( \sum _{i=1}^{[\frac{n}{s}]}A_i\right) =\sum _{i=1}^{[\frac{n}{s}]}g(A_i)\) holds for any \([\frac{n}{s}]\) rank-s matrices \(A_1,\ldots ,A_{[\frac{n}{s}]}\in M_n(\mathbb {K})\), then \(g(x)=f(x)+g(0)\), \(x\in M_n(\mathbb {K})\), for some additive map \(f:M_n(\mathbb {K})\rightarrow M_n(\mathbb {K})\). Particularly, g is additive if \(char\mathbb {K}\not \mid \left( [\frac{n}{s}]-1\right) \).  相似文献   

12.
Let \(\mathcal {U}=\{U(t,s)\}_{t\ge s\ge 0}\) be a strongly continuous and exponentially bounded evolution family acting on a complex Banach space X and let \(\mathcal {X}\) be a certain Banach function space of X-valued functions. We prove that the growth bound of the family \(\mathcal {U}\) is less than or equal to \(-\frac{1}{c(\mathcal {U}, \mathcal {X})}\) provided that the convolution operator \(f\mapsto \mathcal {U}*f\) acts on \(\mathcal {X}.\) It is well known that under the latter assumption, the convolution operator is bounded and then \(c(\mathcal {U}, \mathcal {X})\) denotes (ad-hoc) its norm in \(\mathcal {L}(\mathcal {X}).\) As a consequence, we prove that if \(\sup \nolimits _{s\ge 0}\int \nolimits _{s}^\infty \Vert U(t,s)\Vert dt=u_1(\mathcal {U})<\infty ,\) then \(\omega _0(\mathcal {U})u_1(\mathcal {U})\le -1.\) Finally, we give an example showing that the accuracy of the estimates may be quite accurate.  相似文献   

13.
Let p(n) denote the partition function and let \(\Delta \) be the difference operator with respect to n. In this paper, we obtain a lower bound for \(\Delta ^2\log \root n-1 \of {p(n-1)/(n-1)}\), leading to a proof of a conjecture of Sun on the log-convexity of \(\{\root n \of {p(n)/n}\}_{n\ge 60}\). Using the same argument, it can be shown that for any real number \(\alpha \), there exists an integer \(n(\alpha )\) such that the sequence \(\{\root n \of {p(n)/n^{\alpha }}\}_{n\ge n(\alpha )}\) is log-convex. Moreover, we show that \(\lim \limits _{n \rightarrow +\infty }n^{\frac{5}{2}}\Delta ^2\log \root n \of {p(n)}=3\pi /\sqrt{24}\). Finally, by finding an upper bound for \(\Delta ^2 \log \root n-1 \of {p(n-1)}\), we establish an inequality on the ratio \(\frac{\root n-1 \of {p(n-1)}}{\root n \of {p(n)}}\).  相似文献   

14.
Fix any \(n\ge 1\). Let \(\tilde{X}_1,\ldots ,\tilde{X}_n\) be independent random variables. For each \(1\le j \le n\), \(\tilde{X}_j\) is transformed in a canonical manner into a random variable \(X_j\). The \(X_j\) inherit independence from the \(\tilde{X}_j\). Let \(s_y\) and \(s_y^*\) denote the upper \(\frac{1}{y}{\underline{\text{ th }}}\) quantile of \(S_n=\sum _{j=1}^nX_j\) and \(S^*_n=\sup _{1\le k\le n}S_k\), respectively. We construct a computable quantity \(\underline{Q}_y\) based on the marginal distributions of \(X_1,\ldots ,X_n\) to produce upper and lower bounds for \(s_y\) and \(s_y^*\). We prove that for \(y\ge 8\)
$$\begin{aligned} 6^{-1} \gamma _{3y/16}\underline{Q}_{3y/16}\le s^*_{y}\le \underline{Q}_y \end{aligned}$$
where
$$\begin{aligned} \gamma _y=\frac{1}{2w_y+1} \end{aligned}$$
and \(w_y\) is the unique solution of
$$\begin{aligned} \Big (\frac{w_y}{e\ln (\frac{y}{y-2})}\Big )^{w_y}=2y-4 \end{aligned}$$
for \(w_y>\ln (\frac{y}{y-2})\), and for \(y\ge 37\)
$$\begin{aligned} \frac{1}{9}\gamma _{u(y)}\underline{Q}_{u(y)}<s_y \le \underline{Q}_y \end{aligned}$$
where
$$\begin{aligned} u(y)=\frac{3y}{32} \left( 1+\sqrt{1-\frac{64}{3y}}\right) . \end{aligned}$$
The distribution of \(S_n\) is approximately centered around zero in that \(P(S_n\ge 0) \ge \frac{1}{18}\) and \(P(S_n\le 0)\ge \frac{1}{65}\). The results extend to \(n=\infty \) if and only if for some (hence all) \(a>0\)
$$\begin{aligned} \sum _{j=1}^{\infty }E\{(\tilde{X}_j-m_j)^2\wedge a^2\}<\infty . \end{aligned}$$
(1)
  相似文献   

15.
Let \(\Phi _{n}(x)=e^x-\sum _{j=0}^{n-2}\frac{x^j}{j!}\) and \(\alpha _{n} =n\omega _{n-1}^{\frac{1}{n-1}}\) be the sharp constant in Moser’s inequality (where \(\omega _{n-1}\) is the area of the surface of the unit \(n\)-ball in \(\mathbb {R}^n\)), and \(dV\) be the volume element on the \(n\)-dimensional hyperbolic space \((\mathbb {H}^n, g)\) (\(n\ge {2}\)). In this paper, we establish the following sharp Moser–Trudinger type inequalities with the exact growth condition on \(\mathbb {H}^n\):
For any \(u\in {W^{1,n}(\mathbb {H}^n)}\) satisfying \(\Vert \nabla _{g}u\Vert _{n}\le {1}\), there exists a constant \(C(n)>0\) such that
$$\begin{aligned} \int _{\mathbb {H}^n}\frac{\Phi _{n}(\alpha _{n}|u|^{\frac{n}{n-1}})}{(1+|u|)^{\frac{n}{n-1}}}dV \le {C(n)\Vert u\Vert _{L^n}^{n}}. \end{aligned}$$
The power \(\frac{n}{n-1}\) and the constant \(\alpha _{n}\) are optimal in the following senses:
  1. (i)
    If the power \(\frac{n}{n-1}\) in the denominator is replaced by any \(p<\frac{n}{n-1}\), then there exists a sequence of functions \(\{u_{k}\}\) such that \(\Vert \nabla _{g}u_{k}\Vert _{n}\le {1}\), but
    $$\begin{aligned} \frac{1}{\Vert u_{k}\Vert _{L^n}^{n}}\int _{\mathbb {H}^n} \frac{\Phi _{n}(\alpha _{n}(|u_{k}|)^{\frac{n}{n-1}})}{(1+|u_{k}|)^{p}}dV \rightarrow {\infty }. \end{aligned}$$
     
  2. (ii)
    If \(\alpha >\alpha _{n}\), then there exists a sequence of function \(\{u_{k}\}\) such that \(\Vert \nabla _{g}u_{k}\Vert _{n}\le {1}\), but
    $$\begin{aligned} \frac{1}{\Vert u_{k}\Vert _{L^n}^{n}}\int _{\mathbb {H}^n} \frac{\Phi _{n}(\alpha (|u_{k}|)^{\frac{n}{n-1}})}{(1+|u_{k}|)^{p}}dV\rightarrow {\infty }, \end{aligned}$$
    for any \(p\ge {0}\).
     
This result sharpens the earlier work of the authors Lu and Tang (Adv Nonlinear Stud 13(4):1035–1052, 2013) on best constants for the Moser–Trudinger inequalities on hyperbolic spaces.
  相似文献   

16.
The goal of this paper is the study of a transformation concerning the general K-fold finite sums of the form
$$\begin{aligned} \sum _{N\ge n_1\ge \cdots \ge n_K\ge 1}\frac{1}{b_{n_K}}\cdot \prod _{j=1}^{K-1}\frac{1}{a_{n_j}}, \end{aligned}$$
where \((K,N)\in \mathbb {N}^2\) and \(\{a_n\}_{n=1}^{\infty }\), \(\{b_n\}_{n=1}^{\infty }\) are appropriate real sequences. In the application part of our paper we apply the developed transformation to two special parametric multiple zeta-type series that generalize the well-know formula \(\zeta ^\star (\{2\}_K,1)=2\zeta (2K+1)\), \(K\in \mathbb {N}\). As a corollary of our parametric results, we also prove several sum formulas involving multiple zeta-star values.
  相似文献   

17.
In this work, we solve the system of Laguerre–Freud equations for the recurrence coefficients \(\beta _n\), \(\gamma _{n+1} , n \ge 0\) of the \(D_{w}\)-semi-classical orthogonal polynomials sequences of class one in the case when \(\beta _{0}=-t_{0}\), \(\beta _{n+1}=t_{n}-t_{n+1}\) and \(\gamma _{n+1}=-t_{n}^{2}\) with \(t_{n}\ne 0\;n\ge 0\), where \(D_w\) is the divided difference operator. There are essentially four canonical families.  相似文献   

18.
Let \(H^{2}_{m}\) be the Drury–Arveson (DA) module which is the reproducing kernel Hilbert space with the kernel function \((z, w) \in\mathbb{B}^{m} \times\mathbb{B}^{m} \rightarrow (1 - \sum_{i=1}^{m}z_{i} \bar{w}_{i})^{-1}\). We investigate for which multipliers \(\theta: \mathbb{B}^{m} \rightarrow \mathcal{L}(\mathcal{E}, \mathcal {E}_{*})\) with ran?M θ closed, the quotient module \(\mathcal{H}_{\theta}\), given by
$\cdots\longrightarrow H^2_m \otimes\mathcal{E} \stackrel{M_{\theta }}{\longrightarrow}H^2_m \otimes\mathcal{E}_* \stackrel{\pi_{\theta}}{\longrightarrow}\mathcal{H}_{\theta}\longrightarrow0,$
is similar to \(H^{2}_{m} \otimes \mathcal {F}\) for some Hilbert space \(\mathcal{F}\). Here M θ is the corresponding multiplication operator in \(\mathcal{L}(H^{2}_{m} \otimes\mathcal{E}, H^{2}_{m} \otimes\mathcal{E}_{*})\) for Hilbert spaces \(\mathcal{E}\) and \(\mathcal{E}_{*}\) and \(\mathcal {H}_{\theta}\) is the quotient module \((H^{2}_{m} \otimes\mathcal{E}_{*})/ M_{\theta}(H^{2}_{m} \otimes\mathcal{E})\), and π θ is the quotient map. We show that a necessary condition is the existence of a multiplier ψ in \(\mathcal{M}(\mathcal{E}_{*}, \mathcal{E})\) such that
$\theta\psi\theta= \theta.$
Moreover, we show that the converse is equivalent to a structure theorem for complemented submodules of \(H^{2}_{m} \otimes\mathcal{E}\) for a Hilbert space \(\mathcal {E}\), which is valid for the case of m=1. The latter result generalizes a known theorem on similarity to the unilateral shift, but the above statement is new. Further, we show that a finite resolution of DA-modules of arbitrary multiplicity using partially isometric module maps must be trivial. Finally, we discuss the analogous questions when the underlying operator m-tuple (or algebra) is not necessarily commuting (or commutative). In this case the converse to the similarity result is always valid.
  相似文献   

19.
Let \({\mathcal B}_{p,w}\) be the Banach algebra of all bounded linear operators acting on the weighted Lebesgue space \(L^p(\mathbb {R},w)\), where \(p\in (1,\infty )\) and w is a Muckenhoupt weight. We study the Banach subalgebra \(\mathfrak {A}_{p,w}\) of \({\mathcal B}_{p,w}\) generated by all multiplication operators aI (\(a\in \mathrm{PSO}^\diamond \)) and all convolution operators \(W^0(b)\) (\(b\in \mathrm{PSO}_{p,w}^\diamond \)), where \(\mathrm{PSO}^\diamond \subset L^\infty (\mathbb {R})\) and \(\mathrm{PSO}_{p,w}^\diamond \subset M_{p,w}\) are algebras of piecewise slowly oscillating functions that admit piecewise slowly oscillating discontinuities at arbitrary points of \(\mathbb {R}\cup \{\infty \}\), and \(M_{p,w}\) is the Banach algebra of Fourier multipliers on \(L^p(\mathbb {R},w)\). For any Muckenhoupt weight w, we study the Fredholmness in the Banach algebra \({\mathcal Z}_{p,w}\subset \mathfrak {A}_{p,w}\) generated by the operators \(aW^0(b)\) with slowly oscillating data \(a\in \mathrm{SO}^\diamond \) and \(b\in \mathrm{SO}^\diamond _{p,w}\). Then, under some condition on the weight w, we complete constructing a Fredholm symbol calculus for the Banach algebra \(\mathfrak {A}_{p,w}\) in comparison with Karlovich and Loreto Hernández (Integr. Equations Oper. Theory 74:377–415, 2012) and Karlovich and Loreto Hernández (Integr. Equations Oper. Theory 75:49–86, 2013) and establish a Fredholm criterion for the operators \(A\in \mathfrak {A}_{p,w}\) in terms of their symbols. A new approach to determine local spectra is found.  相似文献   

20.
Let \(\Omega \) be a smooth bounded domain in \(\mathbb R^n\) with \(n\ge 2\), \(W^{1,n}_0(\Omega )\) be the usual Sobolev space on \(\Omega \) and define \(\lambda _1(\Omega ) = \inf \nolimits _{u\in W^{1,n}_0(\Omega )\setminus \{0\}}\frac{\int _\Omega |\nabla u|^n \mathrm{d}x}{\int _\Omega |u|^n \mathrm{d}x}\). Based on the blow-up analysis method, we shall establish the following improved Moser–Trudinger inequality of Tintarev type
$$\begin{aligned} \sup _{u\in W^{1,n}_0(\Omega ), \int _\Omega |\nabla u|^n \mathrm{{d}}x-\alpha \int _\Omega |u|^n \mathrm{{d}}x \le 1} \int _\Omega \exp (\alpha _{n} |u|^{\frac{n}{n-1}}) \mathrm{{d}}x < \infty , \end{aligned}$$
for any \(0 \le \alpha < \lambda _1(\Omega )\), where \(\alpha _{n} = n \omega _{n-1}^{\frac{1}{n-1}}\) with \(\omega _{n-1}\) being the surface area of the unit sphere in \(\mathbb R^n\). This inequality is stronger than the improved Moser–Trudinger inequality obtained by Adimurthi and Druet (Differ Equ 29:295–322, 2004) in dimension 2 and by Yang (J Funct Anal 239:100–126, 2006) in higher dimension and extends a result of Tintarev (J Funct Anal 266:55–66, 2014) in dimension 2 to higher dimension. We also prove that the supremum above is attained for any \(0< \alpha < \lambda _{1}(\Omega )\). (The case \(\alpha =0\) corresponding to the Moser–Trudinger inequality is well known.)
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号