首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The magnetic properties of an antiferromagnet with trigonal symmetry, namely, HoFe3(BO3)4, have been investigated theoretically. The calculations have been performed in the molecular field approximation and in the framework of the crystal field model for the rare-earth subsystem. Extensive experimental data on the magnetic properties of HoFe3(BO3)4 have been interpreted and good agreement between theory and experiment has been achieved using the obtained theoretical dependences. The spontaneous spin-reorientation transition and the spin-reorientation transition induced by a magnetic field Ba from the easy-axis to easy-plane state, as well as the spin-flop transition in a magnetic field Bc, have been described. It has been shown that the spontaneous spin-reorientation transition is a magnetic analog of the Jahn-Teller effect. The temperature dependences of the initial magnetic susceptibility at temperatures ranging from 2 to 300 K, the nonlinear curves of magnetization for Bc and Bc in a magnetic field up to 1.2 T (which indicate the occurrence of first-order phase transitions), and their evolution with variations in the temperature have been described, as well as the temperature and field dependences of the magnetization in a magnetic field up to 9 T. The parameters of the trigonal crystal field for the rare-earth ion Ho3+ and the parameters of the Fe-Fe and Ho-Fe exchange interactions have been determined in the course of interpretation of the experimental data.  相似文献   

2.
王芳  沈保根  张健  孙继荣  孟凡斌  李养贤 《中国物理 B》2010,19(6):67501-067501
Magnetic properties and magnetocaloric effect of compound PrFe 12 B 6 are investigated.The coexistence of hard phase PrFe 12 B 6 and soft phase α-Fe causes interesting phenomena on the curves for the temperature dependence of magnetization.PrFe 12 B 6 experiences a first order phase transition at the Curie temperature 200 K,accompanied by an obvious lattice contraction,which in turn results in a large magnetic entropy change.The Maxwell relation fails to give the correct information about magnetic entropy change due to the first order phase transition nature.The large magnetic entropy changes of PrFe 12.3 B 4.7 obtained from heat capacity method are 11.7 and 16.2 J/kg.K for magnetic field changes of 0-2 T and 0-5 T respectively.  相似文献   

3.
The boundaries between the paramagnetic, superconducting and magnetically-ordered phases in the pseudoternary system Dy(IrxRh1?x)4B4 have been established down to 1.2 K. Comparisons between the present system and other pseudoternary systems M(IrxRh1?x)4B4 show that the depression of the superconducting transition temperature (ΔTc), relative to the nonmagnetic Lu compounds, can be described qualitatively by the de Gennes factor (g?1)2J(J+1). The nature of the magnetic order for the Rh-rich compounds was investigated by means of low field measurements and seems to be different from simple ferromagnetism.  相似文献   

4.
The effect of magnetic inhomogeneity on magnetic, magnetocaloric, and transport properties of the colossal magnetoresistance manganites with first order ferromagnetic-to-paramagnetic phase transition is studied. The experiments were performed on the single-crystalline samples of La0.6Pr0.1Ca0.3MnO3. The inhomogeneity is described by the Curie temperature distribution function, which is found from the magnetization data. The temperature dependence of the magnetic field induced change in the entropy is shown to be determined by the distribution function and the shift of the transition temperature in a magnetic field. Similarly, magnetoresistance in the transition region is determined by the resistivity at H=0 and the shift of the transition temperature. The maximum entropy change as well as maximum magnetoresistance can be achieved in the magnetic field of order δTC/BM where δTC is the transition width and BM is the rate of change of the Curie temperature with magnetic field.Our approach to analysis of the effects of inhomogeneity is general and therefore can be used for all compounds with the first order magnetic phase transition.  相似文献   

5.
In this work we calculate the energy levels, wave functions and transition probabilities for a number of compounds whose crystal field parameters have been determined. We introduce a convergence criterion in the diagonalization of the Hamilton matrices dependent upon a self consistency test on the eigenvectors. This assures us of numerically accurate wave functions.First we calculated energy level and susceptibility differences in (Nd3+)PbMoO4 dependent on the multiplicative constants θn, used with the published Alm to determine the crystal field parameters Blm, (Blm = θnAlM). Calculated energy levels as a function of external magnetic field strength and orientation are compared with experimental results for three different sets of published crystal field parameters, Blm, for (Fe3+)TiO2. The ground state energy levels, and wave functions, have been calculated for the non-Kramers Ho3+ ion in the crystals PbMoO4, LaCl3 and HoCl3. Easily distinguishable variations in the temperature dependence of the Xzz component of the susceptibility are found as a function of the host crystal. It is pointed out that susceptibility calculations, based upon measured crystal field parameters, in conjunction with subsequent susceptibility measurements, provide a good check on the validity of the crystal field parameters.  相似文献   

6.
The magnetic properties of Y2 B 2/3Mo4/3O7 complex oxides (B = Co, Fe) were studied in the temperature range 2–300 K. At low temperatures, these compounds exhibit spin-glass properties with freezing temperatures T f=26 and 33 K, respectively, and typical features in the magnetic hysteresis and in the dependences of the real part of the dynamic magnetic susceptibility on temperature and ac magnetic field frequency. Above T f, the static magnetic susceptibility of the samples studied depends on the applied magnetic field, which is tentatively assigned to the presence of metallic cobalt and/or yttrium orthoferrite YFeO3 introduced in the course of sample preparation. __________ Translated from Fizika Tverdogo Tela, Vol. 47, No. 12, 2005, pp. 2182–2188. Original Russian Text Copyright ? 2005 by Bazuev, Korolev.  相似文献   

7.
低温高压下的Na5Eu(WO4)4的发光和晶体场参数   总被引:1,自引:0,他引:1       下载免费PDF全文
郭常新  崔宏滨  李碧琳 《物理学报》1996,45(8):1409-1417
用低温金刚石对顶砧高压显微光谱系统在20—300K低温和0—10GPa高压范围内研究了白钨矿型化学计量的基质发光晶体四钨酸铕钠Na5Eu(WO4)4中Eu3+的发光.确定了Eu3+荧光谱线和能级在低温下的压力移动率.它随温度变化,表明温度和压力对Eu3+谱线作用不是独立无关的.按晶体场理论简化方法推导了能级的晶体场参数表达式,并按实验数据拟合出在不同低温下晶体场参数随压力的移  相似文献   

8.
In order to describe magnetic properties of U3X4 compounds a model is proposed, which contains, besides isotropic exchange, uniaxial exchange anisotropy and three-axial crystal field term. Semiclassical considerations lead to a noncollinear, three-axial, ground state configuration and stability conditions for such an ordering are found. The behaviour of the system with the external magnetic field of different orientations is discussed at zero-temperature. There is no saturation in any direction and asymptotic formulas for magnetization at the high fields and for the initial susceptibility tensor are given. An expression for the Curie temperature is obtained in the simplest molecular field approximation. The model seems to explain qualitatively the experimental data.  相似文献   

9.
10.
Magnetization and neutron diffraction studies have been performed on Ce4Sb3 compound (cubic Th3P4-type, space group I4¯3d, no. 220). Magnetization of Ce4Sb3 reveals a ferromagnetic transition at ∼5 K, the temperature below which the zero-field-cooled and field-cooled magnetization bifurcate in low applied fields. However, a saturation magnetization (MS) value of only ∼0.93μB/Ce3+ is observed at 1.8 K, suggesting possible presence of crystal field effects and a paramagnetic/antiferromagnetic Ce3+ moment. Magnetocaloric effect in this compound has been computed using the magnetization vs. field data obtained in the vicinity of the magnetic transition, and a maximum magnetic entropy change, −ΔSM, of ∼8.9 J/kg/K is obtained at 5 K for a field change of 5 T. Inverse magnetocaloric effect occurs at ∼2 K in 5 T indicating the presence of antiferromagnetic component. This has been further confirmed by the neutron diffraction study that evidences commensurate antiferromagnetic ordering at 2 K in zero magnetic field. A magnetic moment of ∼1.24μB/Ce3+ is obtained at 2 K and the magnetic moments are directed along Z-axis.  相似文献   

11.
The magnetic properties of antiferromagnetic compound Mn3B4 were examined using pulsed magnetic field up to 470 kOe. It was found that Mn3B4 shows a clear metamagnetic transition under 360 kOe at 4.2K. The present results are not explained by the magnetic structure proposed by Neov and a modified magnetic structure is proposed to understand the present magnetization curve. The magnetic phase diagram in the H-T plane is shown.  相似文献   

12.
Er3+ electron spin resonance ESR and magnetic susceptibility have been studied in metallic lanthanum dihydride host. The ESR spectrum contains a single asymmetrical line with g-factor g = 6.68 ± 0.05 close to that expected for Γ7 as ground state. The experimental magnetic susceptibility was interpreted on the base of LLW cubic crystal field Hamiltonian. The best fit of the experimental data has been obtained for the following B4 and B6 crystal field parameters: B4 = ?5.2 × 10?3 K; B6 = 3.8 × 10?5 K which support the anionic-like character hydridic model of hydrogen atoms in this hydride.  相似文献   

13.
It was found that the metallic compound (Mn0.95Ni0.05)3B4 was ferromagnetic below 195 K and antiferromagnetic between 195 and 354 K. The transition temperature from ferromagnetic to antiferromagnetic increases with increasing external magnetic field. On the other hand, the transition temperature from antiferromagnetic to paramagnetic decreases with increasing magnetic field. It is expected that the present results might be explained by the theoretical results on the coexistence of ferro- and antiferromagnetism in the itinerant electron system reported by Moriya and Usami.  相似文献   

14.
Fluorescence spectra of LiYF4:Pr3+ have been measured between 12,000 and 22,000 cm−1 under pressures up to 10 GPa. In total, 25 crystal field energy levels were obtained and used for the determination of free-ion and crystal field parameters under pressure. According to the nephelauxetic effect, the free-ion parameters decrease with increasing pressure. The relative decrease is larger for the Slater than for the spin-orbit coupling parameter. This behavior is consistent with former studies on Pr3+ in different crystals and can be explained by a special covalency model. According to an effective D2d symmetry, five crystal field parameters B02(f,f), B04(f,f), B44(f,f), B06(f,f), and B46(f,f) are non-zero. The pressure-induced changes of these parameters have been determined up to the maximum pressure of 10 GPa. In order to improve the calculation of the crystal field levels, the configuration interactions with the 4f16p1 configuration have been taken into account. The effect of these interactions are also analyzed under pressure and distinct improvements of the energy level calculations have been obtained.  相似文献   

15.
Measurements of magnetic susceptibility χ as a function of temperature T and of magnetisation M as a function of applied magnetic field H at a number of fixed temperatures were made on polycrystalline samples of Cu2FeGeSe4. The χ versus T data show that an antiferromagnetic transition occurs at 20 K and that a second transition occurs at 8 K, indicating a transition to weak ferromagnetic form. The M versus H curves indicated that at all temperatures below 70 K bound magnetic polarons (BMP) occur, in the paramagnetic, antiferromagnetic and weak ferromagnetic ranges. Below 8 K, the M versus H curves exhibited magnetic hysteresis, and this is attributed to the interaction of the BMPs with tetragonally anisotropic matrix. The B versus H curves were well fitted by a Langevin-type of equation, and the variation of the fitting parameters determined as a function of temperature. These showed that above 20 K the total BMP magnetisation fell almost linearly with increasing temperature and effectively disappeared at 70 K. The number of BMPs remained practically constant with temperature having a mean value of 6.55×1018/cm3. The analysis gave a value of 213 μB for the average magnetic moment of a BMP, corresponding to 42.4 Fe atoms. Using a simple spherical model, this gives the radius of a BMP as 12.0 Å.  相似文献   

16.
The magnetic properties and the magnetic entropy change AS have been investigated for Gd6Co1.67Si3 compounds with a second-order phase transition. The saturation moment at 5 K and the Curie temperature TC are 38.1μB and 298 K, respectively. The AS originates from a reversible second-order magnetic transition around TC and its value reaches 5.2 J/kg.K for a magnetic field change from 0 to 5T. The refrigerant capacity (RC) of Gd6Co1.67Si3 are calculated by using the methods given in Refs.[12] and [21], respectively, for a field change of 0 5T and its values are 310 and 440 J/kg, which is larger than those of some magnetocaloric materials with a first-order phase transition.  相似文献   

17.
Single crystals of samarium oxide Sm2O3 with monoclinic B structure were prepared by the Verneuil process adapted to a plasma torch. Some properties of these crystals have been studied (cleavage, hardness …) especially the magnetic properties. Paramagnetic susceptibilities measurements have been performed for various orientations of the crystal with respect to the magnetic field at constant temperatures (5, 77, 300 K) as well as at increasing temperatures (5–1000 K) and indicate an anisotropy. An interpretation of this phenomena is proposed.  相似文献   

18.
Neutron diffraction measurements, made on powder samples, show that Ho4Co3 and Er4Co3 intermetallic compounds are ferrimagnetic at 4.2 K. The magnetic moments of the 2 holmium sites are 8.7 and 2.1 μB and those of the erbium sites are equal to 8.7 and 8.1μB. The cobal+ magnetic moment is 0.2μB for both compounds. The easy magnetization direction lies on the hexagonal plane for Ho4Co3 while for Er4Co3 there are 2 anisotropy directions. Exchange interactions between rare-earth ions of both sites are very weak compared with the total crystal field splitting of the ground state multiplet J. The crystal field parameters are calculated and the magnitude and direction of the rare-earth magnetic moments in each site is determined.  相似文献   

19.
Tb0.75Y0.25Co3B2 was studied as a function of temperature by neutron powder diffraction, ac susceptibility and SQUID magnetization measurements. The solid solution, which is of hexagonal symmetry and is paramagnetic at 300 K, undergoes a magnetic Co–Co ordering transition at ∼150 K, and a second magnetic Tb–Tb ordering transition at ∼17 K. The latter induces a spin-reorientation transition, in which the magnetic axis rotates from the c-axis toward the basal plane. The component of the magnetic axis, which is perpendicular to c, leads to a crystal symmetry reduction from hexagonal to monoclinic. The observed magnitude of the magnetic moment of the Tb ion is 1.5 μB, unusually small relative to the free ion and parent compound (TbCo3B2) values. These magnetic and crystal properties are discussed and compared with what was previously published for the parent compound.  相似文献   

20.
MnV2O4 exhibits a paramagnetic to ferrimagnetic transition at 57 K and shows significant magnetic hysteresis below 55 K. By performing detailed powder X-ray diffraction at the same temperature during cooling and warming sequences, it is found that the magnetic hysteresis observed here is owing to strains induced by the structural phase separation. The intensity of the electron spin resonance spectra shows unusual temperature dependence, which might be related to the phase separation induced by the structural transition. By performing a mean field analysis, we obtained the exchange energies among the different magnetic moments and qualitatively understood the micromagnetic properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号