首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
考察了Ag(111)表面和吸氯的Ag(111)表面上氧的吸附行为.结果表明在Ag(111)及低暴露量氯吸附的Ag(111)上氧吸附时,表面上均存在弱的分子氧和原子氧物种.但在高暴露量氯吸附的Ag(111)表面上氧吸附时则选择性地只产生表面分子氧物种,这种选择性只与氯的吸附程度有关,而与氯的存在与否无关.结合以前的实验结果,对氯吸附至(c)阶段时的Ag(111)表面上氧的选择性吸附行为的本质作了详细讨论.  相似文献   

2.
Using time-dependent high-resolution x-ray photoelectron spectroscopy at BESSY II, the adsorption and desorption processes of CO on stepped Pt(355) = Pt[5(111) x (111)] were investigated. From a quantitative analysis of C 1s data, the distribution of CO on the various adsorption sites can be determined continuously during adsorption and desorption. These unique data show that the terrace sites are only occupied when the step sites are almost saturated, even at temperatures as low as 130 K. The coverage-dependent occupation of on-top and bridge adsorption sites on the (111) terraces of Pt(355) is found to differ from that on Pt(111), which is attributed to the finite width of the terraces and changes in adsorbate-adsorbate interactions. In particular, no long-range order of the adsorbate layer could be observed by low-energy electron diffraction. Further details are derived from sticking coefficient measurements using the method devised by King and Wells [Proc. R. Soc. London, Ser. A 339, 245 (1974)] and temperature-programmed desorption. The CO saturation coverage is found to be slightly smaller on the stepped surface as compared to that on Pt(111). The initial sticking coefficient has the same high value of 0.91 for both surfaces.  相似文献   

3.
We present a study of the growth and thermal stability of hexanethiol (C6) films on GaAs(110) by direct recoil spectroscopy with time-of-flight analysis. We compare our results with the better known case of C6 adsorption on Au(111). In contrast to the two-step adsorption kinetics observed for Au surfaces after lengthy exposures, data for C6 adsorption on the GaAs(110) surface are consistent with the formation of a single dense phase of C6 molecules at lower exposures. On the contrary, in solution preparation, dense phases can only be obtained on GaAs for long alkanethiols and after lengthy immersions. The C6 layer has a first desorption peak at 325 K, where partial desorption of the alkanethiol molecules takes place. Fits to the desorption curves result in a 1 eV adsorption energy, in agreement with a chemisorption process. Increasing the temperature to 500 K results in the S-C bond scission with only S remaining on the GaAs(110) surface. The possibility of forming dense, short-alkanethiol layers on semiconductor surfaces from the vapor phase could have a strong impact for a wide range of self-assembled monolayer applications, with only minimal care not to surpass room temperature once the layer has been formed in order to avoid molecular desorption.  相似文献   

4.
The gas-surface reaction dynamics of NO impinging on an iron(II) phthalocyanine (FePc) monolayer were investigated using King and Wells sticking measurements. The initial sticking probability was measured as a function of both incident molecular beam energy (0.09-0.4 eV) and surface temperature (100-300 K). NO adsorption onto FePc saturates at 3% of a monolayer for all incident beam energies and surface temperatures, suggesting that the final chemisorption site is confined to the Fe metal centers. At low surface temperature and low incident beam energy, the initial sticking probability is 40% and decreases linearly with increasing beam energy and surface temperature. The results are consistent with the NO molecule sticking onto the FePc molecules via physisorption to the aromatics followed by diffusion to the Fe metal center, or precursor-mediated chemisorption. The adsorption mechanism of NO onto FePc was confirmed by control studies of NO sticking onto metal-free H2Pc, inert Au111, and reactive Al111.  相似文献   

5.
The heat of adsorption of naphthalene on Pt(111) at 300 K was measured with single-crystal adsorption calorimetry. The heat of adsorption on the ideal, defect-free surface is estimated to be (300 - 34 - 199(2)) kJ/mol. From this, a C-Pt bond energy for aromatic hydrocarbons on Pt(111) of approximately 30 kJ/mol is estimated, consistent with earlier results for benzene on Pt(111). There is higher heat of adsorption at very low coverage, attributed to step sites where the adsorption heat is >/=330 kJ/mol. Saturation coverage, = 1 ML, corresponds to 1.55 x 10(14) molecules/cm(2). Sticking probability measurements of naphthalene on Pt(111) give a high initial value of 1.0 and a Kisliuk-type coverage dependence that implies precursor-mediated sticking. The ratio of the hopping rate to the desorption rate of this precursor is approximately 51. Naphthalene adsorbs transiently on top of chemisorbed naphthalene molecules with a heat of adsorption of 83-87 kJ/mol.  相似文献   

6.
The kinetics of NO adsorption and dissociation on Pd(111) surfaces and the NO sticking coefficient (s(NO)) were probed by isothermal kinetic measurements between 300 and 525 K using a molecular beam instrument. NO dissociation and N2 productions were observed in the transient state from 425 K and above on Pd(111) surfaces with selective nitrogen production. Maximum nitrogen production was observed between 475 and 500 K. It was found that, at low temperatures, between 300 and 350 K, molecular adsorption occurs with a constant initial s(NO) of 0.5 until the Pd(111) surface is covered to about 70-80% by NO. Then s(NO) rapidly decreases with further increasing NO coverage, indicating typical precursor kinetics. The dynamic adsorption - desorption equilibrium on Pd(111) was probed in modulated beam experiments below 500 K. CO titration experiments after NO dosing indicate the diffusion of oxygen into the subsurface regions and beginning surface oxidation at > or = 475 K. Finally, we discuss the results with respect to the rate-limiting character of the different elementary steps of the reaction system.  相似文献   

7.
We investigated the water (D(2)O) adsorption at 135?K on a hydrogen pre-adsorbed Rh(111) surface using temperature programmed desorption and infrared reflection absorption spectroscopy (IRAS) in ultrahigh vacuum. With increasing the hydrogen coverage, the desorption temperature of water decreases. At the saturation coverage of hydrogen, dewetting growth of water ice was observed: large three-dimensional ice grains are formed. The activation energy of water desorption from the hydrogen-saturated Rh(111) surface is estimated to be 51 kJ/mol. The initial sticking probability of water decreases from 0.46 on the clean surface to 0.35 on the hydrogen-saturated surface. In IRAS measurements, D-down species were not observed on the hydrogen saturated surface. The present experimental results clearly show that a hydrophilic Rh(111) clean surface changes into a hydrophobic surface as a result of hydrogen adsorption.  相似文献   

8.
The interaction of propene with Ag(001) is investigated by high resolution electron energy loss spectroscopy and supersonic molecular beam methods under ultra high vacuum conditions. Propene adsorbs molecularly at 110 K and desorbs intact leaving a clean surface after annealing to 160 K. Two adsorption sites, characterized by slightly different vibrational modes, exist. The low frequency species is observed already at low coverage for molecules impinging at strongly hyperthermal energies while at lower translational energy it appears only at high coverage. The initial sticking probability S(0) decreases with increasing translational energy, as appropriate for nonactivated adsorption systems. The angle and energy dependence of S(0) indicate that scaling is intermediate between total and normal energy. From the coverage dependence of the sticking probability we infer that both a nonthermal intrinsic and a thermal extrinsic precursor exist.  相似文献   

9.
A microcanonical unimolecular rate theory (MURT) model incorporating quantized surface vibrations and Rice-Ramsperger-Kassel-Marcus rate constants is applied to a benchmark system for gas-surface reaction dynamics, the activated dissociative chemisorption and associative desorption of hydrogen on Cu(111). Both molecular translation parallel to the surface and rotation are treated as spectator degrees of freedom. MURT analysis of diverse experiments indicates that one surface oscillator participates in the dissociative transition state and that the threshold energy for H2 dissociation on Cu(111) is E0 = 62 kJ/mol. The spectator approximation for rotation holds well at thermally accessible rotational energies (i.e., for Er less than approximately 40 kJ/mol). Over the temperature range from 300 to 1000 K, the calculated thermal dissociative sticking coefficient is ST = S0 exp(-Ea/kBT) where S0 = 1.57 and Ea = 62.9 kJ/mol. The sigmoid shape of rovibrational eigenstate-resolved dissociative sticking coefficients as a function of normal translational energy is shown to derive from an averaging of the microcanonical sticking coefficient, with threshold energy E0, over the thermal surface oscillator distribution of the gas-surface collision complexes. Given that H2/Cu(111) is one of the most dynamically biased of gas-surface reactive systems, the simple statistical MURT model simulates and broadly rationalizes the H2/Cu(111) reactive behavior with remarkable fidelity.  相似文献   

10.
The interactions of Na(+) and Ag(+) cations with an Ag(111) surface in the presence and absence of water molecules were investigated with cluster models and ab initio methods. The Ag surface was described with two-layered Ag(10) and Ag(18) cluster models, and MP2/RECP/6-31+G(d) was used as the computational method. The effect of the basis set superposition error (BSSE) was taken into account with counterpoise (CP) correction. The interactions between Na(+) and Ag(111) surface were found to be primarily electrostatic, and the interaction energies and equilibrium distances at the different adsorption sites were closely similar. The largest CP-corrected MP2 adsorption energy for Na(+) was -190.2 kJ/mol. Owing to the electrostatic nature of the Na(+)-Ag(111) interaction, Na(+) prefers to be completely surrounded by water molecules rather than directly adsorbed to the surface. Ag(+)-Ag(111) interactions were much stronger than Na(+)-Ag(111) interactions because they were dominated by orbital contributions. The largest CP-corrected MP2 adsorption energy for Ag(+) was -358.9 kJ/mol. Ag(+) prefers to adsorb on sites where it can bind to several surface atoms, and in the presence of water molecules, it remains adsorbed to the surface while the water molecules form hydrogen bonds with one another. The CP correction had an effect on the interaction energies but did not change the relative trends.  相似文献   

11.
The permanent dipole of quinonoid zwitterions changes significantly when the molecules adsorb on Ag(111) and Cu(111) surfaces. STM reveals that sub-monolayers of adsorbed molecules can exhibit parallel dipole alignment on Ag(111), in strong contrast with the antiparallel ordering prevailing in the crystalline state and retrieved on Cu(111) surfaces, which minimizes the dipoles electrostatic interaction energy. DFT shows that the rearrangement of electron density upon adsorption is a result of donation from the molecular HOMO to the surface, and back donation to the LUMO with a concomitant charge transfer that effectively reduces the overall charge dipole.  相似文献   

12.
The adsorption and desorption kinetics of water molecules on Rh(111) were investigated using temperature programed desorption (TPD). Water molecules on Rh(111) show coverage-dependent sticking probability; the initial sticking probability is estimated to be 0.46. In the desorption process, a dilute gaslike phase and two-dimensional islands of water coexist on the surface. Based on the model proposed by Kreuzer and Payne [Surf. Sci.200, L433 (1988)], the apparent fractional-order TPD spectra can be interpreted as first-order desorption from the coexistence of two phases on which the sticking probabilities are different. Based on this, the previous estimation of pre-exponential factors assuming half-order desorption [A. Beniya et al., J. Chem. Phys.125, 054717 (2006)] should be revised.  相似文献   

13.
The enantioselective hydrogenation of beta ketoesters over Ni-based catalysts is a rare example of a heterogeneously catalyzed chiral reaction. The key step in catalyst preparation is the adsorption from solution of chiral molecules (modifiers). One particularly interesting modifier is (S)-glutamic acid because the dominant enantiomeric product in the catalytic reaction depends upon the modification temperature. We report a reflection absorption infrared spectroscopy (RAIRS) study of the adsorption of methylacetoacetate (the simplest beta ketoester) onto (S)-glutamic acid modified Ni{111} surfaces as functions of the modifier coverage and modification temperature. We show that the sticking probability of methylacetoacetate is close to 0 on saturated (S)-glutamic acid covered surfaces. At lower modifier coverage, methylacetoacetate adsorption can occur. Adsorption of methylacetoacetate onto a Ni{111} surface modified by (S)-glutamic acid at 300 K results in the diketo tautomeric form, with evidence being observed for a 1:1 interaction between zwitterionic (S)-glutamate and methylacetoacetate. In contrast, adsorption of methylacetoacetate onto a Ni{111} surface modified by (S)-glutamic acid at 350 K occurs exclusively in the enol tautomeric form. The implications for the heterogeneous catalytic reaction are discussed.  相似文献   

14.
Atomic deuterium and hydrogen adsorption on thin silver films deposited under UHV conditions on Pyrex glass was studied by means of measurements of the resistance changes ΔR combined with thermal desorption mass spectrometry (TDMS). The roughness factor of thin Ag films of known geometry, textured as a result of sintering, was determined by means of the BET method (xenon adsorption), while their preferential crystallographic orientation (1 1 1) was estimated on the basis of XRD data. ΔR measurements were performed during various exposures of the films maintained at a constant temperature (78 or 89 K) to the flux of atomic deuterium (hydrogen) of known concentration generated on a hot tungsten filament. Every adsorption run was followed by thermal desorption. This gives a link between the ΔR measured directly in the course of adsorption and the coverage Θ determined on the basis of TDMS data, together with the BET and XRD results. It was found that at 78 K the rate of atomic deuterium (hydrogen) adsorption and recombination on the surface of sintered thin Ag films fits the Eley–Rideal (ER) mechanism, while at 89 K its overlapping with the Langmuir–Hinshelwood (LH) recombination starts to play a role. The initial sticking probability reaches 0.41 and 0.65 for D and H atoms, respectively, while the corresponding probabilities for recombination are 0.04 and 0.07. The activation energies for associative desorption of deuterium and hydrogen are 36 and 29 kJ/mol, respectively.  相似文献   

15.
Rotationally resolved, velocity distributions for desorbed O2 molecules formed by O-atom recombination on the surface of a polycrystalline Ag surface are reported. Surface O atoms are generated by oxygen permeation through a 0.25-mm-thick Ag foil heated to 1020 K. Desorbing O2 molecules are probed by (2 + 1) resonant multiphoton ionization via the C 3Pig (3ssigma), v' = 2 <-- <-- X 3Sigmag-, v" = 0 transition and time-of-flight mass spectrometry. Measured velocity distributions are near Maxwell-Boltzmann and yield average translational energies which are significantly lower than the surface temperature ([Et]/2kB approximately 515 K) and essentially independent of rotational excitation. Comparison of the observed C-X (2,0) resonantly enhanced multiphoton ionization spectrum with spectral simulations suggests that the v" = 0 rotational state distribution is more consistent with the surface temperature, but spectral congestion and apparent intensity perturbations prevent a more quantitative analysis. The calculated, sticking curves show a small barrier energy barrier (approximately 10 meV) beyond which sticking decreases. These observations are consistent with low energy desorption and adsorption pathways involving a weakly bound molecular O2 precursor.  相似文献   

16.
Studying the interaction of SO2 with metal surfaces under UHV conditions, a question of central interest is whether the molecule dissociates (leaving back the catalyst poison sulphur on the surface) or not. A spontaneous or a thermally activated dissociation of SO2 occurs on Fe, Rh, W, Ni, Pd and Pt. On Cu and Ag a strong chemisorption, but only a partial dissociation induced by defects or coadsorbed alkalis, and on Au no chemisorption at all were observed.

In this paper a comparison of our results obtained for the chemisorption and multilayer adsorption of SO2 on Cu(111), Ag(111), Ag(100) and Ag(110) in the temperature range between 80 K and 900 K is given. By combining highly resolved TPD-measurements, isothermal and temperature-programmed ΔΦ-experiments after different stages of exposure and molecular beam backscattering measurements (MBBS) —assisted by LEED, AES and isotope mixing experiments — a destinction between ordinary desorption and desorption after a reorientation process during the heating procedure could be made. Whereas on clean Ag surfaces adsorption and desorption of SO2 are observed only below 300 K, on Cs-precovered Ag desorption of SO2 takes place even above 600 K.

Finally, results concerning the different stages of SO2 multilayer adsorption (bi-, tri-, multilayers) are presented showing a characteristic dependence of the layer growth on the adsorption temperature, the impinging SO2 flux density and on the surface structure.  相似文献   


17.
The chemisorption of methyl and phenyl iodide has been studied at Cu(110) and Ag(111) surfaces at 290 K with STM and XPS. At both surfaces dissociative adsorption of both molecules leads to chemisorbed iodine, with the STM showing c(2 x 2) and (square root 3 x square root 3)R30 structures at the Cu(110) and Ag(111) surfaces, respectively. At the Cu(110) surface a comparison of coexisting c(2 x 2) I(a) and p(2 x 1) O(a) domains shows the iodine adatoms to be chemisorbed in hollow sites with evidence at low coverage for diffusion in the (110) direction. In the case of methyl iodide no carbon adsorption is observed at either the silver or the copper surfaces, but chemisorbed phenyl groups are imaged at the Cu(110) surface after exposure to phenyl iodide. The STM images show the phenyl groups as bright features approximately 0.7 nm in diameter and 0.11 nm above the iodine adlayer, reaching a maximum surface concentration after approximately 6 Langmuir exposure. However, the phenyl coverage decreases with subsequent exposures to PhI and is negligible by approximately 1000 L exposure, consistent with the formation and desorption of biphenyl. The adsorbed phenyls are located above hollow sites in the substrate, they are stabilized at the top and bottom of step edges and in paired chains (1.1 nm apart) on the terraces with a regular interphenyl spacing within the chains of 1.0 nm in the (110) direction. The interphenyl ring spacing and diffusion of individual phenyls from within the chains shows that the chains do not consist of biphenyl species but may be a precursor to their formation. Although the XPS data shows carbon present at the Ag(111) surface after exposure to PhI, no features attributable to phenyl groups were observed by STM.  相似文献   

18.
We report on the experimental evidence of the role of rotational alignment of the gas-phase molecules in the interaction of propylene with Ag(001). Molecular alignment has been controlled by a velocity selection of the impinging molecules, flying in a supersonic seeded molecular beam. The experimental findings indicate that at low surface coverage the sticking probability is independent of molecular alignment, while when coverage exceeds few percent of a monolayer, molecules impinging rotating parallel to the surface (helicopter-like configuration) achieve a higher chance to be trapped than those which impinge rotating perpendicularly (cartwheels). The sudden appearance of a large stereodynamic effect suggests that the adsorption proceeds via a mobile precursor state and is tentatively correlated with a change in the configuration of the added propylene molecules, which adsorb tilted rather than flat at the surface.  相似文献   

19.
根据本文系列I~[6]提出的电极/溶液界面溶剂化层偶极取向分布模型, 拟合计算Ag(111)、Ag(100)及Ag(110)/水溶液界面的内层微分电容(C_1)~表面电荷密度(σ)变化关系。表明在银电极上, 吸附水分子似分别稳定在金属原子点阵的顶位(111)或穴位(100)及(110)。讨论了溶剂化层的结构与性质对C_1~σ曲线可能产生的影响。  相似文献   

20.
The interaction of CO with structurally well-defined PdAg/Pd(111) surface alloys was investigated by temperature-programmed desorption (TPD) and high-resolution electron energy loss spectroscopy (HREELS) to unravel and understand contributions from electronic strain, electronic ligand and geometric ensemble effects. TPD measurements indicate that CO adsorption is not possible on the Ag sites of the surface alloys (at 120 K) and that the CO binding strength on Pd sites decreases significantly with increasing Ag concentration. Comparison with previous scanning tunneling microscopy (STM) data on the distribution of Pd and Ag atoms in the surface alloy shows that this modification is mainly due to geometric ensemble effects, since Pd(3) ensembles, which are the preferred ensembles for CO adsorption on non-modified Pd(111), are no longer available on Ag-rich surfaces. Consequently, the preferred CO adsorption site changes with increasing Ag content from a Pd(3) trimer via a Pd(2) dimer to a Pd monomer, going along with a successive weakening of CO adsorption. Additionally, the CO adsorption properties of the surface alloys are also influenced by electronic ligand and strain effects, but on a lower scale. The results are discussed in comparison with previous findings on PdAg bulk alloys, supported PdAg catalysts and PdAu/Pd(111) model systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号