共查询到20条相似文献,搜索用时 15 毫秒
1.
Ricardo J Cassella Otoniel D de Sant'AnaAlessandra T Rangel Maria de Fátima B de CarvalhoRicardo E Santelli 《Microchemical Journal》2002,71(1):21-28
An electrothermal atomic absorption spectrometry (ETAAS) with polarized Zeeman background correction was used for determining selenium in petroleum refinery aqueous streams containing large amounts of volatile unknown organic compounds. Some parameters that might affect the measurement were investigated such as the amount of matrix modifier added, the temperature program and the calibration mode employed. Obtained results indicate that, in this kind of sample, selenium must be determined by standard addition procedure with a careful control of the dry step temperature and ramp pattern. Also, the results show that 2.5 μg of Pd must be added as matrix modifier to stabilize the analyte in the range of 2-20 ng Se. In order to evaluate the accuracy of the procedure, selenium was determined in 18 samples by ETAAS and hydride generation atomic absorption spectrometry (HGAAS) (as reference methodology). In both techniques the results agreed well. 相似文献
2.
Single noble metal permanent modifiers such as, Rh, Ir, and Ru, as well as mixed tungsten plus noble metal (W-Rh, W-Ru, W-Ir) permanent modifiers thermally deposited on the integrated platform of transversally heated graphite atomizer were employed for the determination of arsenic in sludges, soils, sediments, coals, ashes and waters by electrothermal atomic absorption spectrometry. Microwave digests of solid samples and water samples were employed for obtaining the analytical characteristics of the methods with different permanent modifiers. The performance of the modifiers for arsenic determination in the real samples depended strongly on the type of permanent modifier chosen. The single noble metal (Rh, Ir and Ru) permanent modifiers were suitable for the analyte determinations in simpler matrices such as waters (recoveries of certified values 95-105%), but the analyte recoveries of certified values in sludges, soils, sediments, coals, and ashes were always lower than 90%. On the other hand, for the determination of arsenic, using W-Rh, W-Ru, and W-Ir permanent modifiers presented recoveries of certified values within 95-105% for all the samples. Long-term stability curves obtained for the determination of arsenic in environmental samples with different permanent modifiers (Rh, Ir, Ru, W-Rh, W-Ir, W-Ru) showed that the improvement in the tube lifetime depends on the tungsten deposit onto the platform. The tungsten plus noble metal permanent modifier presents a tube lifetime of at least 35% longer when compared with single permanent modifier. The results for the determination of As employing different permanent modifiers in the samples were in agreement with the certified reference materials, since no statistical differences were found after applying the paired t-test at the 95% confidence level. 相似文献
3.
Cassella RJ Barbosa BA Santelli RE Rangel AT 《Analytical and bioanalytical chemistry》2004,379(1):66-71
This paper reports the determination of arsenic and antimony in naphtha by employing electrothermal atomic absorption spectrometry (ETAAS) as the analytical technique. In order to promote the direct determination of the analytes in the very volatile naphtha, the formation of a microemulsion with different surfactants (Triton X-100 and Brij-35) and different chemical modification strategies were tested. The results indicated that Triton X-100 is the best emulsification agent for naphtha in both As and Sb determination when it is employed at a concentration of 1% w/v in the microemulsion. Under these conditions, the microemulsion was stabile for at least 2 h. By using Brij-35 it was possible to achieve good stability only in the first 15 min. Among all chemical modification approaches investigated (Ir permanent modifier, W-Ir permanent modifier, and Pd modifier), the Ir permanent modifier provided better sensitivity for both analytes and allowed a higher pyrolysis temperature, which decreased the background signals at lower levels. Under the best conditions established in this work, an RSD of 4.6% (20 g L–1) and a detection limit of 2.7 g L–1 were observed for arsenic. For antimony, an RSD of 4.0% (20 g L–1) and a detection limit of 2.5 g L–1 were obtained. The accuracy of the procedure was assessed by analyzing spiked samples of naphtha from different origins. 相似文献
4.
A flow injection procedure for the separation and pre-concentration of inorganic arsenic based on the complexation with ammonium diethyl dithiophosphate (DDTP) and sorption on a C-18 bonded silica gel minicolumn is proposed. During the sample injection by a time-based fashion, the As3+-DDTP complex is stripped from the solution and retained in the column. Arsenic(V) and other ions that do not form complexes are discarded. After reduction to the trivalent state by using potassium iodide plus ascorbic acid, total arsenic is determined by electrothermal atomic absorption spectrometry (ETAAS). Arsenic(V) concentration can be calculated by difference. After processing 6 ml sample volume, the As3+-DDTP complexes were eluted directly into the autosampler cup (120 μl). Ethanol was used for column rinsing. Influence of pH, reagent concentration, pre-concentration and elution time and column size were investigated. When 30 μl of eluate plus 10 μl of 0.1% (w/v) Pd(NO3)2 were dispensed into the graphite tube, analytical curve in the 0.3–3 μg As l−1 range was obtained (r=0.9991). The accuracy was checked for arsenic determination in a certified water, spiked tap water and synthetic mixtures of arsenite and arsenate. Good recoveries (97–108%) of spiked samples were found. Results are precise (RSD 7.5 and 6% for 0.5 and 2.5 μg l−1, n=10) and in agreement with the certified value of reference material at 95% confidence level. 相似文献
5.
微型氢化物发生-原子吸收光谱法测定纺织品中的痕量砷和锑 总被引:1,自引:0,他引:1
采用三毛细管微型在线氢化发生技术和装置, 建立了氢化物发生-电热石英管原子吸收法测定纺织品中痕量As、 Sb的分析方法. 研究了共存离子对As、 Sb检测的干扰及消除方法. 结果表明: 该方法除Co、 Sn对As和Ni对Sb有干扰外, 其它干扰元素允许量都较大. 采用酒石酸和KI混合掩蔽剂可抑制Co、 Sn对As和Ni对 Sb的干扰. As和Sb的检出限分别为0.7和0.4 ng/L, 已用于测定纺织品中痕量As和Sb的分析. 相似文献
6.
Smichowski P Farías S Valiente L Iribarren ML Vodopivez C 《Analytical and bioanalytical chemistry》2004,378(2):465-469
Total arsenic in nine species Antarctic macro algae has been measured, by electrothermal atomic absorption spectrometry using a Pd/Mg(NO3)2 matrix modifier, to determine their capacity to accumulate the element. Macro algae were collected in February during the 2000 austral summer season at Jubany Station (Argentinean scientific station) around Potter Cove, King George Island. An optimized two-step microwave (MW) program was used to digest the samples. Dried samples were treated with HNO3, H2O2, and HF, left overnight, then subjected to the first MW cycle. After cooling HNO3 and HClO4 were added and samples were subjected to the second MW cycle of digestion treatment. The effect of power and time on As recovery was examined. The analytical features of the method were: detection limit, 0.24 g g–1 (dry mass); precision (RSD), 4.2–5.7%; recovery 91–105%. A wide range of As-retention capacity (41.0–447 g g–1 dry mass) was observed among the different species. The highest levels of As were found in Phaeurus antarcticus (447 g g–1 dry mass). This organism satisfies several prerequisites to be considered for consideration as a biomonitor in future studies. 相似文献
7.
Tl(I) and Tl(III) are preconcentrated simultaneously from aqueous solutions by colloid precipitate flotation using two collectors: hydrated iron(III) oxide (Fe2O3·xH2O) and iron(III) tetramethylenedithiocarbamate (Fe(TMDTC)3). After the coprecipitation step and the addition of foaming agents, Tl(I) and Tl(III) were separated from the water by a stream of air bubbles. Various factors affecting Tl(I) and Tl(III) recoveries during the separation from water, including the collector mass, the nature of the supporting electrolyte, pH, ζ potential of the collector particle surfaces, type of tenside, etc., were investigated. Within the optimal pH range (6–6.5), establishing by a recommended procedure, Tl(I) and Tl(III) were separated quantitatively (94.9–100.0%) with 30 mg Fe(III). Both Tl ions were simultaneously separated without any previous conversion of one type of Tl ion to the other. Total Tl determination was performed by electrothermal atomic absorption spectrometry by previous matrix modification of the concentrated samples. The determination limit of Tl by this method is 0.108 μg l−1. 相似文献
8.
Determination of cadmium in urine by ETAAS suffers from severe interferences deteriorating the precision and accuracy of the analysis. Electrodeposition step prior to ETAAS allows to avoid interferences and makes cadmium determination possible even at ultratrace levels. The proposed procedures involve electrolytic deposition of cadmium from acidified urine on previously electrolytically deposited palladium film on a graphite atomizer tube, followed by removal of residual solution, pyrolysis and atomization. Both electrodeposition processes take place in a drop of the respective solution (palladium nitrate modifier and acidified urine, respectively), when Pt/Ir dosing capillary serves as an anode and the graphite tube represents a cathode. The voltage is held at −3.0 V. Matrix removal is then accomplished by withdrawal of the depleted sample solution from the tube (procedure A) or the same but followed by rinsing of the deposit with 0.2 mol l−1 HNO3 (procedure B). The accuracy of both procedures was verified by recovery test. Detection limits 0.025 and 0.030 μg Cd/l of urine were achieved for A and B procedures, respectively. Both procedures are time consuming. The measurement cycle represents 5 and 7 min for A and B procedures, respectively. 相似文献
9.
石墨炉原子吸收光谱法测定蚕蛹中Cr、Se量 总被引:1,自引:0,他引:1
建立了石墨炉原子吸收光谱法测定蚕蛹中Cr、Se的方法,为蚕蛹新资源食品的开发及明确其营养价值提供科学数据。利用石墨炉原子吸收光谱法,偏振塞曼效应扣除背景,石墨炉程序升温方式进行Cr、Se的原子化,检测峰值吸收。加入硝酸镍、吐温X-100为基体改进剂,在体积分数0.5%HNO3介质中对桑蚕蛹中Cr、Se进行测定。方法的精密度:4.0%(Cr),3.1%(Se)。加标回收率:96.8%~105.3%(Cr),92.1%~108.8%(Se)。Cr、Se的线性范围和检出限分别为:0~10μg/L(Cr),0~40μg/L(Se);LOD=1.22μg/L(Cr),1.86μg/L(Se)。建立的分析方法适用于蚕蛹中Cr、Se的测定。 相似文献
10.
Traces of Cd were determined by electrothermal atomic absorption spectrometry after electrochemical preconcentration on a commercial graphite ridge probe modified with Pd. The Pd electrochemically deposited on the probe surface served not only as the modifier but it also protected the graphite surface. Cd was electrodeposited at a controlled potential − 1.2 V (vs. saturated calomel electrode) using the Pd-modified graphite probe as a working electrode. The sensitivity of Cd determination remained unchanged for 300 electrodeposition and atomization cycles. The detection limit (3σblank) was improved with increasing time of electrolysis and was 1.2 ng l− 1 for a 10 min electrolysis time in the presence of 0.1 mol l− 1 NaNO3. The procedure was applied for the determination of Cd in (1 + 1) diluted seawater and in (1 + 1) diluted urine samples using the standard addition method. 相似文献
11.
A method is described enabling to eliminate the spectral interference from alumina matrix onto As determination at the wavelength 189 nm by electrothermal atomic absorption spectrometry with deuterium background correction. Matrix modification was performed by the addition of ammonium fluoride to protect the formation of aluminium oxide implicated in causing spectral interference and to increase volatility of alumina matrix via the formation of AlF3. Pre-treating of the pyrolytic graphite platform with a solution of rhodium and citric acid has enabled to stabilize the analyte up to temperature of 1300 °C at which most of AlF3 could be removed from the graphite furnace. The application of 2 μg of Rh + 20 μg of citric acid + 200 μg of NH4F has enabled an accurate and interference-free determination of As up to 40 μg of Al in the form of AlCl3 as verified by analytical recoveries study and resulted in characteristic mass and LOD value in the original sample 15 pg and 50 ng g−1, respectively (10-μL aliquots of sample). 相似文献
12.
13.
Marc M. Lamoureux C. L. Chakrabarti J. Craig Hutton Albert Kh. Gilmutdinov Yuri A. Zakharov D. Conrad Gr goire 《Spectrochimica Acta Part B: Atomic Spectroscopy》1995,50(14):1847-1867
The mechanism of aluminium spike formation and dissipation of aluminium atoms in electrothermal atomization absorption spectrometry has been investigated using two different approaches. The first approach employs a graphite electrothermal atomizer coupled to an inductively coupled plasma mass spectrometer (ICP-MS) in a configuration that allows simultaneous measurement of atomic, or molecular, absorption signals and mass spectrometric signals. Aluminium sub-oxide (AlO and Al2O) and CO(g) spikes in ICP-MS are correlated with the appearance of both Al atom spikes and Al-containing molecule spikes in absorption spectrometry. The aluminium carbide (AlC2) signal in ICP-MS is not coincident with the appearance of either Al atom spikes or Al-containing molecule spikes in absorption spectrometry. The second approach uses two different imaging systems, i.e. shadow spectral filming (SSF) and shadow spectral digital imaging (SSDI), to provide temporally and spatially resolved absorption profiles of Al atoms and Al-containing molecules during Al spike formation and dissipation. The transverse cross-sectional distribution of Al atoms and of Al-containing molecules in the graphite furnace are complementary to one another for both wall and platform atomization. The highest concentration of Al atoms is near the graphite surface, whereas the highest concentration of Al-containing molecular species is at the centre of the graphite tube. The Al-containing molecules observed in both wall and platform atomization consist of both gaseous Al-molecules and a non-uniformly distributed cloud of finely dispersed Al2O3(s,1) particles. A mechanism of formation that is consistent with the above experimental observations is presented. It is proposed that Al atom spikes are formed from gaseous Al2O precursors and that this reaction is triggered by the formation of a molten, condensed-phase Al4C3 melt. 相似文献
14.
A true direct solid sampling electrothermal atomic absorption spectrometry method with Zeeman-effect background correction (Analytik Jena ZEEnit 60 AAS) was developed for the determination of As, Cd, Hg, Pb, Sb and Zn in powdered titanium dioxide of pharmaceutical, food and cosmetics grade. The interaction of the titanium matrix and graphite surface of the sample carrier boat in a transversely heated graphite tube atomizer was investigated. Conversion of titanium dioxide to interfering TiO2–TiC-liquid phase, running out the sampling boat, was observed at temperatures above 2000 °C. The temperature program was optimized accordingly for these volatile analytes in atomization and cleaning steps in order to prevent this interference and to prolong significantly the analytical lifetime of the boat to more than one thousand runs. For all elements, calibration by aqueous standard addition method, by wet-chemically analyzed samples with different content of analytes and/or by dosing one sample in different amounts, were proved as adequate quantification procedures. Linear dynamic calibration working ranges can be considerably expanded up to two orders of magnitude within one measurement run by applying three-field dynamic mode of the Zeeman background correction system. The results obtained by true direct solid sampling technique are compared with those of other independent, mostly wet-chemical methods. Very low limits of detection (3σ criterion) of true solid sampling technique of 21, 0.27, 24, 3.9, 6.3 and 0.9 ng g− 1 were achieved for As, Cd, Hg, Pb, Sb and Zn, respectively. 相似文献
15.
A new approach for developing a cloud point extraction-electrothermal atomic absorption spectrometry has been described and used for determination of arsenic. The method is based on phase separation phenomenon of non-ionic surfactants in aqueous solutions. After reaction of As(V) with molybdate towards a yellow heteropoly acid complex in sulfuric acid medium and increasing the temperature to 55 °C, analytes are quantitatively extracted to the non-ionic surfactant-rich phase (Triton X-114) after centrifugation.To decrease the viscosity of the extract and to allow its pipetting by the autosampler, 100 μl methanol was added to the surfactant-rich phase. An amount of 20 μl of this solution plus 10 μl of 0.1% m/v Pd(NO3)2 were injected into the graphite tube and the analyte determined by electrothermal atomic absorption spectrometry.Total inorganic arsenic(III, V) was extracted similarly after oxidation of As(III) to As(V) with KMnO4. As(III) was calculated by difference. After optimization of the extraction condition and the instrumental parameters, a detection limit (3σB) of 0.01 μg l−1 with enrichment factor of 52.5 was achieved for only 10 ml of sample. The analytical curve was linear in the concentration range of 0.02-0.35 μg l−1. Relative standard deviations were lower than 5%. The method was successfully applied to the determination of As(III) and As(V) in tap water and total arsenic in biological samples (hair and nail). 相似文献
16.
The present work reports the development of a methodology for the direct determination of vanadium in high saline waters derived from offshore petroleum exploration employing electrothermal atomic absorption spectrometry. Such waters, usually called produced waters, present complex composition containing various organic and inorganic substances. In order to attain best conditions (highest sensitivity besides lowest background) for the methodology, studies about the effects of several variables (evaluation of pyrolysis and atomization temperatures, type of chemical modifier, concentration of modifier and pyrolysis time) and the convenient calibration strategy were performed. Best conditions were reached with the addition of 10 μg of NH4H2PO4 as chemical modifier employing pyrolysis (during 10 s) and atomization temperatures of 1500 and 2700 °C, respectively. Obtained results indicated that, in this kind of sample, vanadium can be determined by standard addition method or employing an external calibration approach with standard solutions prepared in 0.8 mol l−1 NaCl medium. In order to evaluate possible matrix interferences, a recovery test was performed with five spiked samples of produced waters. The limit of detection, limit of quantification and relative standard deviation in 0.8 mol l−1 NaCl medium were also calculated and the derived values were 1.9 μg l−1, 6.3 μg l−1 and 5.6% (at 10 μg l−1 level), respectively. 相似文献
17.
A method was developed for the quantitative determination of total vanadium concentration in mussels via electrothermal atomic absorption spectrometry (ETAAS). After the microwave digestion of the samples, a program using temperatures of 1600 °C and 2600 °C for ashing and atomization respectively, without any matrix modifiers, allowed us to obtain results that were satisfactory since they agreed closely with certified reference material values. The detection limit was 0.03 mg kg–1 (dry weight), indicating that the method is suitable for the analysis of mussel samples. This determination was compared with matrix modifiers that have been reported previously. The method was applied to various cultivated and wild mussels from the Galician coast, yielding levels below 1 mg kg–1 (wet weight). 相似文献
18.
19.
A flow injection (FI) on-line solvent extraction system for electrothermal atomic absorption spectrometry (ETAAS) was developed with nickel as a model trace element. The nickel pyrrolidine-dithiocarbamate chelate was extracted on line into isobutyl methyl ketone, which was delivered into the FI system by a peristaltic pump equipped with poly(tetrafluoroethylene) tubing. The organic phase was separated from the aqueous phase by a novel gravity phase separator with a small conical cavity, and stored in a collector tube, from which 50 μl organic concentrate was introduced into the graphite tube by an air flow. ETAAS determination of the analyte was performed in parallel with the extraction process. An enrichment factor of 25 was obtained in comparison with 50 μl direct introduction while achieving a detection limit of 4 ng l−1 (3σ), and a precision of 1.5% relative standard deviation for 1.0 μg l−1 nickel (n = 11). The proposed method was successfully applied to the determination of nickel in body fluids and other biological samples. 相似文献