首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An extensive critical evaluation of the application of dispersive liquid–liquid microextraction (DLLME) combined with chromatographic and atomic-spectroscopic methods for the determination of organic and inorganic compounds is presented. The review emphasizes the procedures used for the prior treatment of food samples, which are very different from the DLLME procedures generally proposed for water samples. The main contribution of this work in the field of DLLME reviews is its critical review of the abundant literature showing the increasing interest and practical advantages of using DLLME and closely related microextraction techniques for food analysis.  相似文献   

2.
A miniaturized dispersive liquid–liquid microextraction (DLLME) procedure coupled to liquid chromatography (LC) with fluorimetric detection was evaluated for the preconcentration and determination of thiamine (vitamin B1). Derivatization was carried out by chemical oxidation of thiamine with 5 × 10−5 M ferricyanide at pH 13 to form fluorescent thiochrome. For DLLME, 0.5 mL of acetonitrile (dispersing solvent) containing 90 μL of tetrachloroethane (extraction solvent) was rapidly injected into 10 mL of sample solution containing the derivatized thiochrome and 24% (w/v) sodium chloride, thereby forming a cloudy solution. Phase separation was carried out by centrifugation, and a volume of 20 μL of the sedimented phase was submitted to LC. The mobile phase was a mixture of a 90% (v/v) 10 mM KH2PO4 (pH 7) solution and 10% (v/v) acetonitrile at 1 mL min−1. An amide-based stationary phase involving a ligand with amide groups and the endcapping of trimethylsilyl was used. Specificity, linearity, precision, recovery, and sensitivity were satisfactory. Calibration graph was carried out by the standard additions method and was linear between 1 and 10 ng mL−1. The detection limit was 0.09 ng mL−1. The selectivity of the method was judged from the absence of interfering peaks at the thiamine elution time for blank chromatograms of unspiked samples. A relative standard deviation of 3.2% was obtained for a standard solution containing thiamine at 5 ng mL−1. The esters thiamine monophosphate and thiamine pyrophosphate can also be determined by submitting the sample to successive acid and enzymatic treatments. The method was applied to the determination of thiamine in different foods such as beer, brewer’s yeast, honey, and baby foods including infant formulas, fermented milk, cereals, and purees. For the analysis of solid samples, a previous extraction step was applied based on an acid hydrolysis with trichloroacetic acid. The reliability of the procedure was checked by analyzing a certified reference material, pig’s liver (CRM 487). The value obtained was 8.76 ± 0.2 μg g−1 thiamine, which is in excellent agreement with the certified value, 8.6 ± 1.1 μg g−1.  相似文献   

3.
A new separation procedure for determination of palladium using dispersive liquid–liquid microextraction with dicyclohexano-18-crown-6 as complexing reagent was developed. In this method, potassium–dicyclohexano-18-crown-6 was used as a hydrophobic complex for the microextraction of palladium as PdCl4 2? complex ion. The main factors affecting DLLME efficiency, such as type and volume of extractant and disperser solvent, concentration of chelating reagent, concentration of KCl and pH were optimized. Under the optimal conditions, the limit of detection for palladium was 16.0 ng mL?1 with enrichment factor of 138. The present method was applied to the determination of palladium in water samples with satisfactory analytical results. The method was simple, rapid, cost efficient and sensitive for the extraction and preconcentration of palladium.  相似文献   

4.
A simple solvent microextraction method termed vortex-assisted liquid–liquid microextraction (VALLME) coupled with gas chromatography micro electron-capture detector (GC-μECD) has been developed and used for the pesticide residue analysis in water samples. In the VALLME method, aliquots of 30 μL toluene used as extraction solvent were directly injected into a 25 mL volumetric flask containing the water sample. The extraction solvent was dispersed into the water phase under vigorously shaking with the vortex. The parameters affecting the extraction efficiency of the proposed VALLME such as extraction solvent, vortex time, volumes of extraction solvent and salt addition were investigated. Under the optimum condition, enrichment factors (EFs) in a range of 835–1115 and limits of detection below 0.010 μg L−1 were obtained for the determination of target pesticides in water. The calculated calibration curves provide high levels of linearity yielding correlation coefficients (r2) greater than 0.9958 with the concentration level ranged from 0.05 to 2.5 μg L−1. Finally, the proposed method has been successfully applied to the determination of pesticides from real water samples and acceptable recoveries over the range of 72–106.3% were obtained.  相似文献   

5.
A novel sample preparation method “Dispersive liquid–liquid–liquid microextraction” (DLLLME) was developed in this study. DLLLME was combined with liquid chromatography system to determine chlorophenoxy acid herbicide in aqueous samples. DLLLME is a rapid and environmentally friendly sample pretreatment method. In this study, 25 μL of 1,1,2,2-tetrachloroethane was added to the sample solution and the targeted analytes were extracted from the donor phase by manually shaking for 90 s. The organic phase was separated from the donor phase by centrifugation and was transferred into an insert. Acceptor phase was added to this insert. The analytes were then back-extracted into the acceptor phase by mixing the organic and acceptor phases by pumping those two solutions with a syringe plunger. After centrifugation, the organic phase was settled and removed with a microsyringe. The acceptor phase was injected into the UPLC system by auto sampler. Fine droplets were formed by shaking and pumping with the syringe plunger in DLLLME. The large interfacial area provided good extraction efficiency and shortened the extraction time needed. Conventional LLLME requires an extraction time of 40–60 min; an extraction time of approximately 2 min is sufficient with DLLLME. The DLLLME technique shows good linearity (r2 ≥ 0.999), good repeatability (RSD: 4.0–12.2% for tap water; 5.7–8.5% for river water) and high sensitivity (LODs: 0.10–0.60 μg/L for tap water; 0.11–0.95 μg/L for river water).  相似文献   

6.
A simple and efficient dual preconcentration method of on-column liquid–liquid–liquid microextraction (LLLME) coupled with base stacking was developed for capillary zone electrophoresis (CZE) in this paper. Four N-methyl carbamates were used as target compounds to evaluate the enrichment means. The carbamates in sample solutions (donor phase) were extracted into a dodecanol phase immobilized on a porous hollow fiber, hydrolyzed and back extracted into 0.20 μL running buffer (acceptor phase) of 30 mmol/L methylamine hydrochloride (pH 11.6) containing 0.5 mmol/L tetradecyltrimethylammonium bromide inside the hollow fiber, stacked further with 0.5 mol/L NaOH injected at −10 kV for 60 s, and separated by CZE. Analytical parameters affecting the LLLME, base stacking and CZE were investigated, including sample solution volume, pH and temperature, extraction time, stirring rate, buffer component, buffer pH, NaOH concentration, stacking time, etc. The enrichment factors of the carbamates were higher than 1100. The relative standard deviation (RSD) of peak height and limits of detection (LODs) were 4.5–5.5% (n = 6) and 2–4 ng/mL (S/N = 3) for standard solutions, respectively. The proposed method was applied to the analysis of vegetable and fruit samples with the RSD less than 6.0% (n = 3) and LODs of 6–10 ng/g (S/N = 3). The calibration solutions were prepared by diluting the stock solutions with blank sample solutions, and the calibration concentrations ranged from 0.012 to 1.0 μg/mL (r > 0.9951). The analytical results demonstrated that the LLLME coupled with base stacking was a simple, convenient and reliable on-column sample pretreatment method for the analysis of anionic analytes in CZE.  相似文献   

7.
A rapid, simple, and sensitive method was developed for lead preconcentration and separation in various real samples by dispersive liquid–liquid microextraction based on the freezing of floating organic drop. In this method, a suitable extraction solvent dissolved in a dispersive solvent was quickly syringed into the water sample so that the solution became turbid. Then, two phases were separated by centrifugation. The floating extractant droplet can be easily solidified on an ice bath and taken out of the water sample. Then, it can be liquefied instantly at room temperature, and analyte can be determined in it. In the creation of a hydrophobic complex with lead, 1-(2-pyridylazo)-2-naphthole (PAN) was used as the chelating agent. 1-Undecanol and acetone were used as extraction and disperser solvent. To achieve the highest recovery, some factors (type and volume of dispersive and extraction solvent, pH, PAN concentration, and salt concentration) were optimised. Under optimised conditions (pH = 9, 1.0 × 10–3 mol L?1 PAN, 15% w/v NaCl, 100 µL 1-undecanol, and 0.3 mL acetone), the lead calibration graph was linear from 1.5 to 80 μg L?1. The detection limit and preconcentration factor were 0.5 μg L?1 and 50, respectively. Lead was successfully determined in water and food (spinach, rice, potato, carrot, and black tea bag) samples by this method.  相似文献   

8.
An analytical approach for the determination of trace amounts of Cd(II) and Pb(II) has been developed using a home-made tablet-based effervescence-assisted dispersive liquid–liquid microextraction (DLLME) method which was performed in a narrow-bore tube, followed by flame atomic absorption spectrometry. In this method, a mixture of tartaric acid, sodium bicarbonate and NaCl was used to make the disperser tablet. Then, microlitre level of an extraction solvent was added in the tablet, and then, it was released into a narrow-bore tube containing sample solution and a complexing agent. An acid–base reaction immediately occurred between tartaric acid and sodium bicarbonate, and the produced CO2 led to the dispersion of the extraction solvent into the solution as tiny droplets and subsequent extraction of the analytes. The method made possible the determination of Cd(II) and Pb(II) in the ranges of 0.1–10 and 1.0–20 µg L?1, respectively. The limits of detection were obtained 0.43 and 0.05 µg L?1 for Pb(II) and Cd(II), respectively. The limits of quantifications were 0.80 and 0.09 µg L?1 for Pb(II) and Cd(II), respectively. Repeatability of the method, which is expressed as relative standard deviation, was obtained 3.1% (n = 6, C = 2 µg L?1) and 1.3% (n = 6, C = 0.2 µg L?1) for Pb(II) and Cd(II), respectively. The accuracy of the developed method was verified by analysing a certified reference material, namely SPS-WW2 Batch 108. Relative recoveries (84–107%, obtained at three fortification levels) confirmed the usefulness of the method for analysis of the analytes in the environmental water samples and fruit juices. The method was shown to be fast, reliable and environmentally friendly with low organic solvent consumption.  相似文献   

9.
This paper describes the development of a new multisyringe flow injection analysis set-up that enables the complete automation of the dispersive liquid–liquid microextraction (DLLME) technique using solvents lighter than water. Its hyphenation with a liquid chromatographic separation is implemented using a single multisyringe pump obtaining a compact, simple, easy to operate, and fast instrument. DLLME is carried out with a throughput of 42 h−1 and DLLME for the extraction of benzo(a)pyrene and its subsequent chromatographic determination can be carried out with an analysis throughput of 7 h−1.  相似文献   

10.
A new method has been developed for liquid–liquid microextraction utilizing a circulation microchannel. A glass microchemical chip having a circular shallow microchannel in contact with a surrounding deeper microchannel was fabricated by a two-step photolithographic wet-etching technique. Surface modification reagent was selectively introduced to the shallow channel by utilizing capillary force, and the surface of the shallow channel was selectively made hydrophobic. With the aid of the hydrophobic/hydrophilic surface patterning, it was possible to keep organic solvent in the circular channel while the aqueous sample solution was continuously flowing in the deep channel. As a result, concentration extraction from sample solution to stationary extractant with a nanoliter scale volume became possible. Concentration extraction has been difficult in a multiphase continuous flow. Function of the newly developed microextraction system was verified with methyl red as a test sample, and concentration extraction to reach equilibrium was successfully carried out. A novel surface modification method utilizing frozen liquid as a masking material was also developed as a reverse process to make the shallow channel hydrophilic and the deep channel hydrophobic. Visualization of circulation motion inside the circular shallow channel induced by flow in the deep channel was observed with a particle tracing method.  相似文献   

11.
Dispersive liquid–liquid microextraction (DLLME) coupled with high-performance liquid chromatography (HPLC)-UV detection was applied for the extraction and determination of bisphenol A (BPA) in water samples. An appropriate mixture of acetone (disperser solvent) and chloroform (extraction solvent) was injected rapidly into a water sample containing BPA. After extraction, sedimented phase was analyzed by HPLC-UV. Under the optimum conditions (extractant solvent: 142 μL of chloroform, disperser solvent: 2.0 mL of acetone, and without salt addition), the calibration graph was linear in the range of 0.5–100 μg L−1 with the detection limit of 0.07 μg L−1 for BPA. The relative standard deviation (RSD, n = 5) for the extraction and determination of 100 μg L−1 of BPA in the aqueous samples was 6.0%. The results showed that DLLME is a very simple, rapid, sensitive and efficient analytical method for the determination of trace amount of BPA in water samples and suitable results were obtained.  相似文献   

12.
Room temperature ionic liquids (RTILs) have been used as extraction solvents in dispersive liquid–liquid microextraction (DLLME) for the determination of eight multi-class pesticides (i.e. thiophanate-methyl, carbofuran, carbaryl, tebuconazole, iprodione, oxyfluorfen, hexythiazox, and fenazaquin) in table grapes and plums. The developed method involves the combination of DLLME and high-performance liquid chromatography with diode array detection. Samples were first homogenized and extracted with acetonitrile. After evaporation and reconstitution of the extract in water containing sodium chloride, a quick DLLME procedure that used the ionic liquid 1-hexyl-3-methylimidazolium hexafluorophosphate ([C6MIM][PF6]) and methanol was developed. The RTIL dissolved in a very small volume of acetonitrile was directed injected in the chromatographic system. The comparison between the calibration curves obtained from standards and from spiked sample extracts (matrix-matched calibration) showed the existence of a strong matrix effect for most of the analyzed pesticides. A recovery study was also developed with five consecutive extractions of the two types of fruits spiked at three concentration levels. Mean recovery values were in the range of 72–100% for table grapes and 66–105% for plum samples (except for thiophanate-methyl and carbofuran, which were 64–75% and 58–66%, respectively). Limits of detection (LODs) were in the range 0.651–5.44 μg/kg for table grapes and 0.902–6.33 μg/kg for plums, representing LODs below the maximum residue limits (MRLs) established by the European Union in these fruits. The potential of the method was demonstrated by analyzing 12 commercial fruit samples (six of each type).  相似文献   

13.
A novel microextraction method is introduced based on dispersive liquid–liquid microextraction (DLLME) in which an in situ metathesis reaction forms a water-immiscible ionic liquid (IL) that preconcentrates aromatic compounds from water followed by separation using high-performance liquid chromatography. The simultaneous extraction and metathesis reaction forming the IL-based extraction phase greatly decreases the extraction time as well as provides higher enrichment factors compared to traditional IL DLLME and direct immersion single-drop microextraction methods. The effects of various experimental parameters including type of extraction solvent, extraction and centrifugation times, volume of the sample solution, extraction IL and exchanging reagent, and addition of organic solvent and salt were investigated and optimized for the extraction of 13 aromatic compounds. The limits of detection for seven polycyclic aromatic hydrocarbons varied from 0.02 to 0.3 μg L−1. The method reproducibility produced relative standard deviation values ranging from 3.7% to 6.9%. Four real water samples including tap water, well water, creek water, and river water were analyzed and yielded recoveries ranging from 84% to 115%.   相似文献   

14.
Dispersive liquid–liquid microextraction (DLLME) has become a very popular environmentally benign sample-preparation technique, because it is fast, inexpensive, easy to operate with a high enrichment factor and consumes low volume of organic solvent. DLLME is a modified solvent extraction method in which acceptor-to-donor phase ratio is greatly reduced compared with other methods. In this review, in order to encourage further development of DLLME, its combination with different analytical techniques such as gas chromatography (GC), high-performance liquid chromatography (HPLC), inductively coupled plasma-optical emission spectrometry (ICP-OES) and electrothermal atomic absorption spectrometry (ET AAS) will be discussed. Also, its applications in conjunction with different extraction techniques such as solid-phase extraction (SPE), solidification of floating organic drop (SFO) and supercritical fluid extraction (SFE) are summarized. This review focuses on the extra steps in sample preparation for application of DLLME in different matrixes such as food, biological fluids and solid samples. Further, the recent developments in DLLME are presented. DLLME does have some limitations, which will also be discussed in detail. Finally, an outlook on the future of the technique will be given.  相似文献   

15.
During the past 7 years and since the introduction of dispersive liquid–liquid microextraction (DLLME), the method has gained widespread acceptance as a simple, fast, and miniaturized sample preparation technique. Owing to its simplicity of operation, rapidity, low cost, high recovery, and low consumption of organic solvents and reagents, it has been applied for determination of a vast variety of organic and inorganic compounds in different matrices. This review summarizes the DLLME principles, historical developments, and various modes of the technique, recent trends, and selected applications. The main focus is on recent technological advances and important applications of DLLME. In this review, six important aspects in the development of DLLME are discussed: (1) the type of extraction solvent, (2) the type of disperser solvent, (3) combination of DLLME with other extraction methods, (4) automation of DLLME, (5) derivatization reactions in DLLME, and (6) the application of DLLME for metal analysis. Literature published from 2010 to April 2013 is covered.  相似文献   

16.
A simple, rapid and efficient method, dispersive liquid–liquid microextraction (DLLME) in conjunction with high-performance liquid chromatography (HPLC), has been developed for the determination of three carbamate pesticides (methomyl, carbofuran and carbaryl) in water samples. In this extraction process, a mixture of 35 µL chlorobenzene (extraction solvent) and 1.0 mL acetonitrile (disperser solvent) was rapidly injected into the 5.0 mL aqueous sample containing the analytes. After centrifuging (5 min at 4000 rpm), the fine droplets of chlorobenzene were sedimented in the bottom of the conical test tube. Sedimented phase (20 µL) was injected into the HPLC for analysis. Some important parameters, such as kind and volume of extraction and disperser solvent, extraction time and salt addition were investigated and optimised. Under the optimum extraction condition, the enrichment factors and extraction recoveries ranged from 148% to 189% and 74.2% to 94.4%, respectively. The methods yielded a linear range in the concentration from 1 to 1000 µg L?1 for carbofuran and carbaryl, 5 to 1000 µg L?1 for methomyl, and the limits of detection were 0.5, 0.9 and 0.1 µg L?1, respectively. The relative standard deviations (RSD) for the extraction of 500 µg L?1 carbamate pesticides were in the range of 1.8–4.6% (n = 6). This method could be successfully applied for the determination of carbamate pesticides in tap water, river water and rain water.  相似文献   

17.
A novel approach for sequential injection-dispersive liquid–liquid microextraction (SI-DLLME) has been suggested. The method is based on the aspiration and mixing of a sample and all required aqueous reagents in the holding coil of an SIA system, delivering it into a conical tube and adding in a mixture of extraction solvent, auxiliary solvent and disperser solvent at high flow rate, resulting in the formation of a cloudy state and the extraction of an analyte. The mixture of extraction and auxiliary solvent is immiscible with water and has a density significantly higher than that of water; consequently, the resulting fine droplets in the mixture, which contain the extracted analyte, are self-sedimented in a short time at the bottom of conical tube. Thus, no centrifugation and no use of a microcolumn are required for separation of the extraction phase. Afterwards, the extracted analyte is aspirated and transferred to a micro-volume Z-flow cell, and the absorbance is measured.The performance of the suggested approach is demonstrated by the SI-DLLME of thiocyanate ions in the form of ion associate with dimethylindocarbocyanine reagent, followed by spectrophotometric detection. A mixture of amyl acetate (as extraction solvent), tetrachloromethane (as auxiliary solvent) and acetonitrile (as disperser solvent) was selected for the DLLME procedure. The appropriate experimental conditions for conventional DLLME and automated SI-DLLME were investigated. The analytical performance of both these procedures was compared. The absorbance of the colored extracts at wavelength 555 nm obeys Beer's law in the range of 3.13–28.2 for conventional DLLME and 0.29–5.81 mg L? 1 of SCN for SI-DLLME, and the limit of detection, calculated from a blank test based on 3 s, is 0.110 for conventional DLLME and 0.017 mg L? 1 for SI-DLLME.  相似文献   

18.
In this article a dispersive liquid?Cliquid microextraction method was applied for evaluation of lithium separation from aqueous solution. Benzo-15-crown-5 (B15C5) was used as a chelating agent prior to extraction. An appropriate mixture of disperser solvent and extraction solvent were added rapidly into the aqueous sample containing lithium ion; as a result, a cloudy solution was formed which consisted of fine droplets of extraction solvent dispersed entirely into aqueous phase. The mixture was centrifuged and the lithium complex with B15C5 was sedimented at the bottom of the conical sample holder. Then, 2.0?mL of enriched phase containing lithium complex was used for determination of lithium ion by flame atomic absorption spectrometry. The conditions for the microextraction performance were investigated. Under the best optimized conditions, the accepted recovery factors for the lithium obtained, ranged from 37.24 to 99.63?%. Furthermore, high preconcentration factors (7.46?C19.93) were also achieved. The relative standard deviation for three replicate measurements of 0.127?mg?L?1 of lithium was 2.83?%.  相似文献   

19.
A method termed dispersive liquid–liquid microextraction (DLLME) coupled with high-performance liquid chromatography-variable wavelength detection (HPLC-VWD) was developed. DLLME-HPLC-VWD is a method for determination of bisphenol A (BPA) in water samples. In this microextraction method, several parameters such as extraction solvent volume, sample volume, disperser solvent, ionic strength, pH, and disperser volume were optimised with the aid of interactive orthogonal array and a mixed level experiment design. First, an orthogonal array design was used to screen the significant variables for the optimisation. Second, the significant factors were optimised by using a mixed level experiment. Under the optimised extraction conditions (extraction solvent: ionic liquid [C6MIM][PF6], 60 µL; dispersive solvent: methanol, 0.4 mL; and pH = 4.0), the performance of the established method was evaluated. The response linearity of the method was observed in a range of 0.002–1.0 mg L?1 (three orders of magnitude) with correlation coefficient (R 2) of 0.9999. The repeatability of this method was 4.2–5.3% for three different BPA levels and the enrichment factors were above 180. The extraction recovery was about 50% for the three different concentrations with 3.4–6.4% of RSD. Limit of detection of the method was 0.40 µg L?1 at a signal-to-noise ratio of 3. In addition, the relative recovery of sample of Songhua River, tap water and barrel-drain water at different spiked concentration levels was ranged 95.8–103.0%, 92.6–98.6% and 87.2–95.3%, respectively. Compared with other extraction technologies, there have been the following advantages of quick, easy operation, and time-saving for the present method.  相似文献   

20.
A rapid and novel method combining dispersive liquid–liquid microextraction and high-performance liquid chromatography coupled with fluorescence detection was developed for the determination of donepezil in human urine. Parameters affecting extraction efficiency and chromatographic determination, such as the type and volume of the extraction and disperser solvent, pH of sample for dispersive liquid–liquid microextraction, mobile-phase composition, pH, column oven temperature, and flow rate for chromatographic determination, were evaluated and optimized. Using a C18 core–shell column (7.5 × 4.6?mm, 2.7?μm), the determination of donepezil was accomplished within 5?min. Under optimum conditions, developed method was linear in the range of 0.5–25?ng?mL?1 with the correlation coefficient >0.99. Limit of detection was 0.15?ng?mL?1. The relative standard deviation at three concentration levels (2, 12.5, and 20?ng?mL?1) was less than 11% with accuracy in the range of 96.9–102.8%. The results of this study demonstrate that the use of dispersive liquid–liquid microextraction and core–shell column can be considered as a powerful tool for the analysis of donepezil in human urine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号