首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Burkholderia cepacia complex (Bcc) employs a quorum sensing (QS) mechanism which is a cell density-dependent bacterial communication system to regulate certain gene expressions. As with many other Gram-negative bacteria, Burkholderia cepacia species use (N-acyl-)homoserine lactones (AHLs or HSLs) as signalling molecules. Because of the essential role of QS in bacterial behavior, the aim of this study was to demonstrate the applicability of our in-house-developed enzyme-linked immunosorbent assays (ELISAs) for the detection of bacterial activities via HSLs in B. cepacia strain LA3 culture supernatants. For this purpose the previously developed monoclonal antibodies (mAbs) HSL1/2-2C10 and HSL1/2-4H5 were exploited. N-3-Oxo-decanoyl-L-homoserine lactone (3-oxo-C10-HSL) was used as main analyte throughout all experiments. With the bacterial culture medium (named ABC medium) a matrix effect in both ELISAs was visible (slight increase in optical density, shift in test midpoints (IC50) and working ranges). For example, ELISA with mAb HSL1/2-2C10 and enzyme tracer HSL3-HRP (HSL derivative conjugated to horseradish peroxidase) had an IC50 of 120 μg L−1 for 3-oxo-C10-HSL in phosphate-buffered saline versus 372 μg L−1 in ABC medium. A significant increase of HSLs in B. cepacia strain LA3 culture supernatants after 12 h to 48 h of growth was observed. Although the analytical result of these immunoassays cannot distinguish HSLs from homoserines (HSs), the appearance of these compounds can be easily followed. Hydrolysis and spiking experiments were carried out with these biological samples. According to our knowledge, these are the first immunoassays for the detection of quorum sensing molecules in biological culture supernatants. This study provides a cost-effective, fast, and sensitive analytical method for detection of HSLs/HSs in biological samples without complex sample preparation and will offer a quick idea about B. cepacia activities. The low sample amount requirement (less than 1 mL) constitutes a tremendous advantage for many analytical questions with biological samples.  相似文献   

2.
The development and characterization of one rat monoclonal antibody (mAb) for 2,4-dinitroaniline and of two rat mAbs for 2,6-dinitroaniline are described. With the immunization of rats with 2,4,6-trinitrophenyl-glycylglycine–keyhole limpet hemocyanine (KLH) conjugate one mAb (PK 5H6) has been developed and formatted into a competitive enzyme-linked immunosorbent assay (ELISA). This assay no. 1 is very sensitive for 2,4-dinitroaniline with a test midpoint of 0.24 ± 0.06 μg L−1 (n = 19) in 40 mM phosphate-buffered saline (PBS). A second hapten, 3-(4-amino-2,6-dinitrophenyl)propionic acid, which was also conjugated to KLH and used for the immunization of rats, led to two sensitive ELISAs for 2,6-dinitroaniline in 40 mM PBS with test midpoints of 0.61 ± 0.08 μg L−1 (n = 15; mAb DNT4 3C6; assay no. 2) and 0.94 ± 0.29 μg L−1 (n = 17; mAb DNT4 1A7, assay no. 3). Selectivities of all mAbs were checked with more than 20 compounds, including nitroaromatic compounds, 2,6-dinitroaniline pesticides, and other substituted derivatives of aniline. As very noticeable cross-reactivities, all mAbs recognize 2-chloro-4,6-dinitroaniline, 4-chloro-2,6-dinitroaniline and 2-bromo-4,6-dinitroaniline, the last of these being a major metabolite of the azo dye Disperse Blue 79. As first demonstrations of applications, two ELISAs (assays no. 1 and 2) were used for the analysis of 2,4- or 2,6-dinitroaniline in spiked water and soil samples. Recovery data were determined and the majority of these data were in the range of 90–120%. These assays can contribute to a very cost-effective and environmentally friendly immunochemical surveillance monitoring of environmental samples for contaminations with these compounds. To the best of the authors’ knowledge, these are the first antibodies described for 2,4-dinitroaniline and for 2,6-dinitroaniline.  相似文献   

3.
A 66-kDa thermostable family 1 Glycosyl Hydrolase (GH1) enzyme with β-glucosidase and β-galactosidase activities was purified to homogeneity from the seeds of Putranjiva roxburghii belonging to Euphorbiaceae family. N-terminal and partial internal amino acid sequences showed significant resemblance to plant GH1 enzymes. Kinetic studies showed that enzyme hydrolyzed p-nitrophenyl β-d-glucopyranoside (pNP-Glc) with higher efficiency (K cat/K m = 2.27 × 104 M−1 s−1) as compared to p-nitrophenyl β-d-galactopyranoside (pNP-Gal; K cat/K m = 1.15 × 104 M−1 s−1). The optimum pH for β-galactosidase activity was 4.8 and 4.4 in citrate phosphate and acetate buffers respectively, while for β-glucosidase it was 4.6 in both buffers. The activation energy was found to be 10.6 kcal/mol in the temperature range 30–65 °C. The enzyme showed maximum activity at 65 °C with half life of ~40 min and first-order rate constant of 0.0172 min−1. Far-UV CD spectra of enzyme exhibited α, β pattern at room temperature at pH 8.0. This thermostable enzyme with dual specificity and higher catalytic efficiency can be utilized for different commercial applications.  相似文献   

4.
Phenoloxidase (PO) is a key enzyme in insect development, responsible for catalyzing the hydroxylation of tyrosine into o-diphenols and the oxidation of o-diphenols into o-quinones. In the present study, the kinetic assay in air-saturated solutions and the kinetic behavior of PO from Pieris rapae (Lepidoptera) larvae in the oxidation of l-tyrosine (a monophenol) and l-DOPA (l-3, 4-dihydroxyphenylalanine) (a diphenol) was studied. The inhibitory effects of 3-hydroxy-4-methoxybenzaldehyde thiosemicarbazone (3-H-4-MBT) on the monophenolase and diphenolase activities of PO were also studied. The results show that 3-H-4-MBT can inhibit both the monophenolase and diphenolase activities of PO. The lag period of l-tyrosine oxidation catalyzed by the enzyme was obviously lengthened and the steady-state activities of the enzyme sharply decreased. The inhibitor was found to be noncompetitively reversible with a K I (K I = K IS) of 0.30 μmol/L and an estimated IC50 of 0.14 ± 0.02 μmol/L for monophenolase and 0.26 ± 0.04 μmol/L for diphenolase. In the time course of the oxidation of l-DOPA catalyzed by the enzyme in the presence of different concentrations of 3-H-4-MBT, the rate decreased with increasing time until a straight line was approached. The microscopic rate constants for the reaction of 3-H-4-MBT with the enzyme were determined.  相似文献   

5.
Determination of the structure of heparin-derived oligosaccharides by 1H NMR is challenging because resonances for all but the anomeric protons cover less than 2 ppm. By taking advantage of increased dispersion of resonances for the anomeric H1 protons at low pD and the superior resolution of band-selective, homonuclear-decoupled (BASHD) two-dimensional 1H NMR, the primary structure of the heparin-derived octasaccharide ∆UA(2S)-[(1 → 4)-GlcNS(6S)-(1 → 4)-IdoA(2S)-]3-(1 → 4)-GlcNS(6S) has been determined, where ∆UA(2S) is 2-O-sulfated ∆4,5-unsaturated uronic acid, GlcNS(6S) is 6-O-sulfated, N-sulfated β-d-glucosamine and IdoA(2S) is 2-O-sulfated α-l-iduronic acid. The spectrum was assigned, and the sites of N- and O-sulfation and the conformation of each uronic acid residue were established, with chemical shift data obtained from BASHD-TOCSY spectra, while the sequence of the monosaccharide residues in the octasaccharide was determined from inter-residue NOEs in BASHD-NOESY spectra. Acid dissociation constants were determined for each carboxylic acid group of the octasaccharide, as well as for related tetra- and hexasaccharides, from chemical shift–pD titration curves. Chemical shift–pD titration curves were obtained for each carboxylic acid group from sub-spectra taken from BASHD-TOCSY spectra that were measured as a function of pD. The pK As of the carboxylic acid groups of the ∆UA(2S) residues are less than those of the IdoA(2S) residues, and the pK As of the carboxylic acid groups of the IdoA(2S) residues for a given oligosaccharide are similar in magnitude. Relative acidities of the carboxylic acid groups of each oligosaccharide were calculated from chemical shift data by a pH-independent method.  相似文献   

6.
A kind of erbium hexacyanoferrate (ErHCF)-modified carbon ceramic electrodes (CCEs) fabricated by mechanically attaching ErHCF samples to the surface of CCEs derived from sol–gel technique was proposed. The resulting modified electrodes exhibit well-defined redox responses with the formal potential of +0.215 V [vs saturated calomel electrode (SCE)] at a scan rate of 20 mV s−1 in 0.5 M KCl (pH 7) solution. The voltammetric characteristics of the ErHCF-modified CCEs were investigated by voltammetry. Attractively, the ErHCF-modified CCEs presented good electrocatalytic activity with a marked decrease in the overvoltage about 400 mV for l-cysteine oxidation. The calibration plot for l-cysteine determination was linear at 5.0 × 10−6–1.3 × 10−4 M with a linear regression equation of I(A) = 0.558 + 0.148c (μM) (R 2 = 0.9989, n = 20), and the detection limit was 2 × 10−6 M (S/N = 3). At last, the ErHCF-modified CCEs were used for amperometric detection of l-cysteine in real samples.  相似文献   

7.
Withania somnifera L. has been traditionally used as a sedative and hypnotic. The present study was carried out for the purification, characterization, and in vitro cytotoxicity of l-asparaginase from W. somnifera L. l-Asparaginase was purified from the fruits of W. somnifera L. up to 95% through chromatography. The purified l-asparaginase was characterized by size exclusion chromatography, polyacrylamide gel electrophoresis (PAGE), and 2D PAGE. The antitumor and growth inhibition effect of the l-asparaginase was assessed using [3-(4, 5-dimethyl-thiazol-2yl)-2, 5-diphenyl-tetrazolium bromide] (MTT) colorimetric dye reduction method. The purified enzyme is a homodimer, with a molecular mass of 72 ± 0.5 kDa, and the pI value of the enzyme was around 5.1. This is the first report of the plant containing l-asparaginase with antitumor activity. Data obtained from the MTT assay showed a LD50 value of 1.45 ± 0.05 IU/ml. W. somnifera L. proved to be an effective and a novel source of l-asparaginase. Furthermore, it shows a lot of similarity with bacterial l-asparaginases EC-2.  相似文献   

8.
Uridine diphosphogalactose-4-epimerase (UDP-galactose-4-epimerase, GalE, EC 5.1.3.2) mediates the 4-epimerization of nucleic acid-activated galactose into UDP-glucose. To date, no enzyme is known to mediate 4-epimerization of free monosaccharide substrates. To determine the potential activity of GalE for free monosaccharide, Escherichia coli GalE was expressed and purified using Ni-affinity chromatography, and its ability to mediate 4-epimerization of a variety of free keto- and aldohexoses was assessed. Purified GalE was found to possess 4-epimerization activity for free galactose, glucose, fructose, tagatose, psicose, and sorbose at 0.47, 0.31, 2.82, 9.67, 15.44, and 2.08 nmol/mg protein per minute, respectively. No 4-epimerization activity was found for allose, gulose, altrose, idose, mannose, and talose. The kinetic parameters of 4-epimerization reactions were K m = 26.4 mM and k cat = 0.0155 min−1 for d-galactose and K m = 237 mM and k cat = 0.327 min−1 for d-tagatose. The 4-epimerization of tagatose, a reaction of commercial interest, was enhanced twofold (19.79 nmol/mg protein per minute) when asparagine was exchanged with serine at position 179. The novel activity of GalE for free monosaccharide may be beneficial for the production of rare sugars using cheap natural resources. Potential strategies for developing enhanced GalE with increased 4-epimerization activity are discussed in the context of the above findings and an analysis of a 3D structural model.  相似文献   

9.
Mixtures of diblock co-oligomers of tri-O-methylated and unmodified cello-oligosaccharides have been found to be amphiphilic, as reported before. In order to clarify their accurate amphiphilic property, diblock co-oligomers of tri-O-methylated and unmodified cello-oligosaccharides with monodispersity, methyl β-d-glucopyranosyl-(1→4)-2,3,6–tri-O-methyl-β-d-glucopyranosyl-(1→4)-2,3,6–tri-O-methyl-β-d-glucopyranosyl-(1→4)-2,3,6-tri-O-methyl-β-d-glucopyranosyl-(1→4)-2,3,6-tri-O-methyl-d-glucopyranoside (1, pentamer), methyl β-d-glucopyranosyl-(1→4)- β-d-glucopyranosyl-(1→4)-2,3,6-tri-O-methyl-β-d-glucopyranosyl-(1→4)-2,3,6-tri-O-methyl-β-d-glucopyranosyl-(1→4)-2,3,6-tri-O-methyl-β-d-glucopyranosyl-(1→4)-2,3,6-tri-O-methyl-d-glucopyranoside (2, hexamer), and methyl β-d-glucopyranosyl-(1→4)-2,3,6-tri-O-methyl-β-d-glucopyranosyl-(1→4)- 2,3,6-tri-O-methyl-d-glucopyranoside (3, trimer) were synthesized independently. These compounds had higher surface activities compared to the mixture of diblock co-oligomers of tri-O-methylated and unmodified cello-oligosaccharides and commercially available methylcellulose (MC) SM-4. This paper describes the methods of synthesis of these compounds, and the influence of amphiphilic character on their surface activity. A new class of carbohydrate-based nonionic surfactant without long alkyl chain was discovered.  相似文献   

10.
The polymerization of o-phenylenediamine (OPD) on l-tyrosine (Tyr) functionalized glassy carbon electrode (GCE) and its electro-catalytic oxidation towards ascorbic acid (AA) had been studied in this report. l-Tyrosine was first covalently grafted on GCE surface via electrochemical oxidation, which was followed by the electrochemical polymerization of OPD on the l-tyrosine functionalized GCE. Then, the poly(o-phenylenediamine)/l-tyrosine composite film modified GCE (POPD-Tyr/GCE) was obtained. X-ray photo-electron spectroscopy (XPS), field emission scanning electron microscope (SEM), and electrochemical techniques have been used to characterize the grafting of l-tyrosine and the polymerization and morphology of OPD film on GCE surface. Due to the doping of the carboxylic functionalities in l-tyrosine molecules, the POPD film showed good redox activity in neutral medium, and thus, the POPD-Tyr/GCE exhibited excellent electrocatalytic response to AA in 0.1 mol l−1 phosphate buffer solution (PBS, pH 6.8). The anode peak potential of AA shifted from 0.58 V at GCE to 0.35 V at POPD-Tyr/GCE with a greatly enhanced current response. A linear calibration graph was obtained over the AA concentration range of 2.5 × 10−4–1.5 × 10–3 mol l−1 with a correlation coefficient of 0.9998. The detection limit (3δ) for AA was 9.2 × 10−5 mol l−1. The modified electrode showed good stability and reproducibility and had been used for the determination of AA content in vitamin C tablet with satisfactory results.  相似文献   

11.
We expressed a putative β-galactosidase from Sulfolobus acidocaldarius in Escherichia coli and purified the recombinant enzyme using heat treatment and Hi-Trap ion-exchange chromatography. The resultant protein gave a single 57-kDa band by SDS-PAGE and had a specific activity of 58 U/mg. The native enzyme existed as a dimer with a molecular mass of 114 kDa by gel filtration. The maximum activity of this enzyme was observed at pH 5.5 and 90 oC. The half-lives of the enzyme at 70, 80, and 90 oC were 494, 60, and 0.2 h, respectively. The hydrolytic activity with p-nitrophenyl(pNP) substrates followed the order p-nitrophenyl-β-d-fucopyranoside > pNP-β-d-glucopyranoside > pNP-β-d-galactopyranoside > pNP-β-d-mannopyranoside > pNP-β-d-xylopyranoside, but not toward aryl-α-glycosides or pNP-β-l-arabinofuranoside. Thus, the enzyme was actually a β-glycosidase. The β-glycosidase exhibited transglycosylation activity with pNP-β-d-galactopyranoside, pNP-β-d-glucopyranoside, and pNP-β-d-fucopyranoside in decreasing order of activity, in the reverse order of its hydrolytic activity. The hydrolytic activity was higher toward cellobiose than toward lactose, but the transglycosylation activity was lower with cellobiose than with lactose.  相似文献   

12.
A rapid and convenient assay system was developed to detect viable Escherichia coli in water. The target bacteria were recovered from solution by immunomagnetic separation and incubated in tryptic soy broth with isopropyl-β-d-thiogalactopyranoside, which induces formation of β-galactosidase in viable bacteria. Lysozyme was used to lyse E. coli cells and release the β-galactosidase. β-Galactosidase converted 4-methylumbelliferyl-β-d-galactoside to 4-methylumbelliferone (4-MU), which was measured by fluorescence spectrophotometry using excitation and emission wavelengths of 355 and 460 nm, respectively. Calibration graphs of 4-MU fluorescence intensity versus E. coli concentration showed a detection range between 8 × 104 and 1.6 × 107 cfu mL−1, with a total analysis time of less than 3 h. The advantage of this method is that it detects viable cells because it is based on the activity of the enzyme intrinsic to live E. coli.  相似文献   

13.
Triblock cooligomers consisting of tri-O-methyl-glucopyranosyl and unmodified glucopyranosyl residues, methyl 2,3,4,6-tetra-O-methyl-β-d-glucopyranosyl-(1 → 4)-2,3,6-tri-O-methyl-β-d-glucopyranosyl-(1 → 4)-β-d-glucopyranosyl-(1 → 4)-β-d-glucopyranosyl-(1 → 4)-2,3,6-tri-O-methyl-β-d-glucopyranosyl-(1 → 4)-2,3,6-tri-O-methyl-α-d-glucopyranoside (1: ABA triblock cooligomer; DS = 2.1) and β-d-glucopyranosyl-(1 → 4)-2,3,6-tri-O-methyl-β-d-glucopyranosyl-(1 → 4)-2,3,6-tri-O-methyl-β-d-glucopyranosyl-(1 → 4)-2,3,6-tri-O-methyl-β-d-glucopyranosyl-(1 → 4)-2,3,6-tri-O-methyl-β-d-glucopyranosyl-(1 → 4)-d-glucopyranose (2: BAB triblock cooligomer; DS = 1.8) were prepared. Compound 1 dissolved both in distilled water and chloroform but compound 2 dissolved in distilled water not in chloroform, though compounds 1 and 2 consist of 4 tri-O-methyl-glucopyranosyl and 2 unmodified anhydro glucopyranosyl units.  相似文献   

14.
New monomers were synthesized and evaluated for their molecular imprinting performance by a recently discovered methodology referred to as one monomer molecularly imprinted polymers (OMNiMIPs). The structural design of the new monomers was based on a lead compound methacrylamidoethyl methacrylate (1) used for the synthesis of OMNiMIP1, and introduced alkyl groups of various sizes at the α-amino position of the lead compound. Enantioselectivity, determined by liquid chromatography, was used to compare the performance of the imprinted polymers. Methyl substitution provided crosslinker 5 (2-methacrylamidopropyl methacrylate), which upon imprint polymerization afforded OMNiMIP5 with approximately the same enantioselectivity (α = 3.8) as OMNiMP1 (α = 3.7) made with the lead compound (1). The other two monomers (6 and 7) with larger alkyl substitutions (isopropyl and sec-butyl respectively) resulted in OMNiMIPs with low selectivity values (α = 1.0 and 1.2 respectively). Last, a strong influence of diastereomeric complexes on OMNiMIP5 selectivity was determined, with L/L and D/D monomer/template pairs giving α values of 3.6–3.8, while L/D and D/L monomer/template pairs had α values of 2.3–2.4. There is no intrinsic enantioselectivity seen for the OMNiMIP5 control polymer made without template at all, giving an α value of 1.03. Electronic Supplementary Material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
Bioimaging is a key to understanding immune responses, cell differentiation, and development. Quantum dots (QDs) conjugated with monoclonal antibodies and other biomolecules are currently utilized for flow cytometry and immunohistochemistry, but monoclonal antibody–QD complexes are of limited use when cell surface markers are not available. In this study, we synthesized novel amphiphilic blockwise alkylated tetrasaccharides and developed a simple method for labeling a wide variety of live cells with organic QDs encapsulated with these carbohydrates. The novel amphiphilic blockwise alkylated tetrasaccharides were as follows: methyl β-d-glucopyranosyl-(1 → 4)-β-d-glucopyranosyl-(1 → 4)-2,3,6-tri-O-methyl-β-d-glucopyranosyl-(1 → 4)-2,3,6-tri-O-methyl-d-glucopyranoside (1), methyl β-d-galactopyranosyl-(1 → 4)-β-d-glucopyranosyl-(1 → 4)-2,3,6-tri-O-methyl-β-d-glucopyranosyl-(1 → 4)-2,3,6-tri-O-methyl-d-glucopyranoside (2), ethyl β-d-glucopyranosyl-(1 → 4)-β-d-glucopyranosyl-(1 → 4)-2,3,6-tri-O-ethyl-β-d-glucopyranosyl-(1 → 4)-2,3,6-tri-O-ethyl-d-glucopyranoside, (3), and ethyl β-d-galactopyranosyl-(1 → 4)-β-d-glucopyranosyl-(1 → 4)-2,3,6-tri-O-ethyl-β-d-glucopyranosyl-(1 → 4)-2,3,6-tri-O-ethyl-d-glucopyranoside (4). The newly synthesized blockwise alkylated tetrasaccharides spontaneously assembled into micelle-like particles, in which the hydrophobic moiety of the blockwise alkylated tetrasaccharides played an important role. They were less toxic to human cells than octyl β-d-glucopyranoside, a commonly used amphiphilic glucoside. Flow cytometry and confocal laser scanning microscopy revealed that the blockwise alkylated tetrasaccharide–organic QD complexes were stably attached to live cells. The affinity of compounds 1 and 2 to the live cell surface was slightly higher than that of compounds 3 and 4. Because the preparation of these carbohydrate–QD complexes is simple and does not require sophisticated equipment, and because the complexes can be autonomously attached to a wide spectrum of cell lines, they can be used as cell labeling reagents in biomedical studies.  相似文献   

16.
Procalcitonin (PCT)—a diagnostic serum parameter for bacterial infection and sepsis—is of great interest in the field of biosensors for point-of-care testing. Its detection needs specific biological recognition elements, such as antibodies. Herein, we describe the development and characterization of rat monoclonal antibodies (mAbs) for PCT, and their application in enzyme-linked immunosorbent assays (ELISAs) for the determination of PCT in patient serum samples. From about 50 mAbs, two mAbs, CALCA 2F3 and CALCA 4A6, were selected as a pair with high affinity for PCT in sandwich immunoassays. Both mAbs could be used either as capture or as detection mAb. They were Protein G-purified and biotinylated when used as detection mAb. The setup of two sandwich ELISAs with standards of human recombinant (hr) PCT, using either CALCA 2F3 (assay A) or CALCA 4A6 (assay B) as capture mAbs and the biotinylated mAbs CALCA 4A6 or CALCA 2F3, respectively, as detection mAbs, led to highly specific determinations of PCT without cross-reactivity to calcitonin and katacalcin. Test midpoints (IC50) of both assays were determined for hrPCT standards in 4% (w/v) human serum albumin and found with 2.5 (assay A) and 2.7 μg L−1 (assay B). With both sandwich ELISAs a collection of eight patient serum samples have been determined in comparison to the determination by the Elecsys BRAHMS PCT assay. Good correlations between our prototype ELISAs and the BRAHMS assay could be demonstrated (R 2: assay A, 0.996 and assay B, 0.990). The use of these newly developed anti-PCT mAbs should find broad applications in immunosensors for point-of-care diagnostics of sepsis and systemic inflammation processes.  相似文献   

17.
Two spirostanol saponins, one of which was a new compound, were isolated among the steroidal glycosides of Allium cyrillii Ten. Bulbs. The structures of these glycosides were established using chemical and spectral analytical methods as β-D-glycopyranosyl-(1 → 2)-[β-D-xylopyranosyl-(1 → 3)]-β-D-glucopyranosyl-(1 → 4)β-D-galactopyranosyl-(1 → 3)-(25R)-5α-spirostan-2α,3β-diol and β-D-glucopyranosyl-(1 → 2)-[4-O-(3hydroxy-3-methylglutaryl)-β-D-xylopyranosyl-(1 → 3)]-β-D-glucopyranosyl-(1 → 4)-β-D-galactopyranosyl(1 → 3)-(25R)-5α-spirostan-2α,3β-diol.  相似文献   

18.

Abstract  

tert-Butyldimethylsilyl (4-O-acetyl-2-azido-3,6-di-O-benzyl-2-deoxy-β-d-glucopyranosyl)-(1 → 4)-3,6-di-O-benzyl-2-deoxy-2-phthalimido-β-d-glucopyranoside (Kawada and Yoneda [MOCHEM-D-09-00120], 2009), designed as a repeating disaccharide unit in a β-glucan having two different faces, was converted into a glycosyl donor and an acceptor. The glycosyl acceptor was glycosylated with the donor to afford a chito-tetrasaccharide derivative in good yield. Phthalimido and azido groups in the tetrasaccharide were successively converted into acetamido and free amino groups, and all other protecting groups were cleaved to obtain the chito-tetrasaccharide (2-amino-2-deoxy-β-d-glucopyranosyl)-(1 → 4)-(2-acetamido-2-deoxy-β-d-glucopyranosyl)-(1 → 4)-(2-amino-2-deoxy-β-d-glucopyranosyl)-(1 → 4)-2-acetamido-2-deoxy-d-glucopyranose.  相似文献   

19.
Amphiphilic polymers Cn-PHEG consisting of water-soluble poly[N 5-2-(hydroxyethyl) l-glutamine] (PHEG) and hydrophobic alkyl chain (carbon number n = 12, 14, 16, or 18) attached at the PHEG terminal was prepared, and association behavior and structure of associate for Cn-PHEG in selective solvent (water/ethylene glycol mixed solvent) have been investigated. α-Helix content of PHEG block for all the polymers increased with weight fraction of ethylene glycol in the mixed solvent (W EG). By light scattering measurements, formation of a small micelle was suggested for C14-, C16-, and C18-PHEG when W EG = 0. With the increase in W EG, appearance of a larger associate was revealed for C16- and C18-PHEG. Evaluated molecular weight and radius of gyration suggested that the micelle is star-like sphere when W EG = 0 and worm-like cylinder when W EG = 0.7. C12-PHEG did not demonstrate any distinct micellization behavior because of the weak hydrophobicity of C12 chain.  相似文献   

20.
Corynebacterium crenatum SYPA 5-5 is an aerobic and industrial l-arginine producer. It was proved that the Corynebacterium glutamicum/Escherichia coli shuttle vector pJC1 could be extended in C. crenatum efficiently when using the chloramphenicol acetyltransferase gene (cat) as a reporter under the control of promoter tac. The expression system was applied to over-express the gene vgb coding Vitreoscilla hemoglobin (VHb) to further increase the dissolved oxygen in C. crenatum. As a result, the recombinant C. crenatum containing the pJC-tac-vgb plasmid expressed VHb at a level of 3.4 nmol g−1, and the oxygen uptake rates reached 0.25 mg A562−1 h−1 which enhanced 38.8% compared to the wild-type strain. Thus, the final l-arginine concentration of the batch fermentation reached a high level of 35.9 g L−1, and the biomass was largely increased to 6.45 g L−1, which were 17.3% and 10.5% higher than those obtained by the wild-type strain, respectively. To our knowledge, this is the first report that the efficient expression system was constructed to introduce vgb gene increasing the oxygen and energy supply for l-arginine production in C. crenatum, which supplies a good strategy for the improvement of amino acid products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号