首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We consider electrons confined to a quantum dot interacting antiferromagnetically with a spin-1 / 2 Kondo impurity. The electrons also interact among themselves ferromagnetically with a dimensionless coupling J , where J =1 denotes the bulk Stoner transition. We show that as J approaches 1 there is a regime with enhanced Kondo correlations, followed by one where the Kondo effect is destroyed and impurity is spin polarized opposite to the dot electrons. The most striking signature of the first, Stoner-enhanced Kondo regime is that a Zeeman field increases the Kondo scale, in contrast to the case for noninteracting dot electrons. Implications for experiments are discussed.  相似文献   

2.
Jinsheng Huang  Libin 《Physics letters. A》2008,372(23):4323-4326
Dipole-allowed optical absorption in a parabolic quantum dot with two electrons are studied by using the exact diagonalization techniques and the compact density-matrix approach. Numerical results are presented for typical GaAs parabolic quantum dots. The results show that the total optical absorption coefficient of two electrons in quantum dot is about five times smaller than that of one electron in quantum dot.  相似文献   

3.
We investigate a mechanism for cooling a lead based on a process that replaces hot electrons by cold ones. The central idea is that a double quantum dot with an inhomogeneous Zeeman splitting acts as energy filter for the transported electrons. The setup is such that hot electrons with spin up are removed, while cold electrons with spin down are added. The required non-equilibrium condition is provided by the capacitive coupling of one quantum dot to the shot noise of a strongly biased quantum point contact in the tunneling limit. Special attention is paid to the identification of an operating regime in which the net electrical current vanishes.  相似文献   

4.
The wave functions of stationary states and the spectrum of two-electron system are analytically determined in a symmetric double quantum dot. It is shown that in the ground state when the external electric field is absent, electrons cannot reside in the same quantum dot due to the Coulomb blockade. This situation changes in an external electric field. At a critical field strength, the probability of finding both electrons in the same quantum dot jumpwise increases from zero to unity.  相似文献   

5.
We investigate a mechanism for cooling a lead based on a process that replaces hot electrons by cold ones. The central idea is that a double quantum dot with an inhomogeneous Zeeman splitting acts as energy filter for the transported electrons. The setup is such that hot electrons with spin up are removed, while cold electrons with spin down are added. The required non-equilibrium condition is provided by the capacitive coupling of one quantum dot to the shot noise of a strongly biased quantum point contact in the tunneling limit. Special attention is paid to the identification of an operating regime in which the net electrical current vanishes.  相似文献   

6.
A (II,Mn)VI diluted magnetic semiconductor quantum dot with an integer number of electrons controlled with a gate voltage is considered. We show that a single electron is able to induce a collective spontaneous magnetization of the Mn spins, overcoming the short range antiferromagnetic interactions, at a temperature order of 1 K, 2 orders of magnitude above the ordering temperature in bulk. The magnetic behavior of the dot depends dramatically on the parity of the number of electrons in the dot.  相似文献   

7.
The scanning metallic tip of a scanning force microscope was coupled capacitively to electrons confined in a lithographically defined gate-tunable quantum dot at a temperature of 300 mK. Single electrons were made to hop on or off the dot by moving the tip or by changing the tip bias voltage owing to the Coulomb-blockade effect. Spatial images of conductance resonances map the interaction potential between the tip and individual electronic quantum dot states. Under certain conditions this interaction is found to contain a tip-voltage induced and a tip-voltage-independent contribution.  相似文献   

8.
We demonstrate single-shot detection of single electrons generated by single photons using an electrically tunable quantum dot and a quantum point contact charge detector. By tuning the quantum dot in a Coulomb blockade before the photoexcitation, we observe the trapping and subsequent resetting of single photogenerated electrons. The photogenerated electrons can be stored in the dot for a tunable time range from shorter to longer than the spin-flip time T1. We combine this trap-reset technique with spin-dependent tunneling under magnetic fields to observe the spin-dependent photon detection within the T1.  相似文献   

9.
屈晋先  段素青  杨宁 《中国物理 B》2017,26(12):127308-127308
We analyze the dynamic localization of two interacting electrons induced by alternating current electric fields in triple quantum dots and triple quantum dot shuttles. The calculation of the long-time averaged occupation probability shows that both the intra-and inter-dot Coulomb interaction can increase the localization of electrons even when the AC field is not very large. The mechanical oscillation of the quantum dot shuttles may keep the localization of electrons at a high level within a range if its frequency is quite a bit smaller than the AC field. However, the localization may be depressed if the frequency of the mechanical oscillation is the integer times of the frequency of the AC field. We also derive the analytical condition of two-electron localization both for triple quantum dots and quantum dot shuttles within the Floquet formalism.  相似文献   

10.
We find that Kondo resonant conductance can occur in a quantum dot in the Coulomb blockade regime with an even number of electrons N. The contacts are attached to the dot in a pillar configuration, and a magnetic field B( perpendicular) along the axis is applied. B( perpendicular) lifts the spin degeneracy of the dot energies. Usually, this prevents the system from developing the Kondo effect. Tuning B( perpendicular) to the value B(*) where levels with different total spin cross restores both the degeneracy and the Kondo effect. We analyze a dot charged with N = 2 electrons. Coupling to the contacts is antiferromagnetic due to a spin selection rule and, in the Kondo state, the charge is unchanged while the total spin on the dot is S = 1/2.  相似文献   

11.
We present a theory of interaction of magnetic Mn ions depending strongly on the number (Ne) of electrons in a quantum dot. For closed electronic shells, we derive the RKKY interaction and its dependence on magnetic ion positions, quantum dot energy quantization omega0, and the number of filled shells Ns. For partially filled shells, the many-electron magnetopolaron effect leads to effective carrier mediated ferromagnetic Mn-Mn interactions. The dependence of the magnetopolaron energy on magnetic ion positions, quantum dot energy quantization omega0, and the number of electrons Ne is predicted.  相似文献   

12.
The detectivity of Quantum dot infrared photodetectors (QDIPs) has always attracted a lot attention as a very important performance parameter. In the paper, based on the theoretical model for the detectivity with the consideration of the common influence of the microscale electron transport, the nanoscale electron transport and the self-consistent potential distribution of the electrons, the dependence of the detectivity of the QDIP on temperature is discussed by analyzing the influence of the temperature on the average electrons number in a quantum dot. Specifically, the average electrons number in a quantum dot shows different change trends (from the increase to decrease) with the increase of the temperature, but the detectivity presents the single decrease trend with the temperature, which can provide the designers with the theoretical guidance for the performance optimization of the QDIP devices.  相似文献   

13.
Time-dependent interference behaviors on currents transporting through a mesoscopic system are investigated by using the Keldysh nonequilibrium Green function technique. The system is composed of a quantum dot coupled with two electron reservoirs. The electrons in the quantum dot are perturbed by two microwave fields (MWFs) through gate. The MWFs cause the energy level splitting in the quantum dot to form multi-channel for the tunneling current, and these branches of current interfere to produce stable oscillation. The resulting oscillation of current is strongly associated with frequency relations between MWFs. The timedependent current is the consequence of resonant effects for electrons resonating with quantum dot state and with MWFs. We present numerical calculations for the cases where the Coulomb interaction U = 0. Negative temporal current and differential conductance are observed even if the dc bias is not small. We compare the results with corresponding quantities in the system perturbed by single MWF.  相似文献   

14.
The influence of excited levels on nonlinear transport properties of a quantum dot weakly coupled to leads is studied using a master-equation approach. A charging model for the dot is compared with a quantum mechanical model for interacting electrons. The currentvoltage curve shows Coulomb lockade and additional finestructure that is related to the excited states of the correlated electrons. Unequal coupling to the leads causes asymmetric conductance peaks. Negative differential conductances are predicted due to the existence of excited states with different spins.  相似文献   

15.
The influence of the electron-phonon coupling of the energy of low-lying states of the barrier D^- center,which consists of a positive ion located on the z-azis at a distance from the two-dimensional quantum dot plane and two electrons in the dot plane bound by the ion,is investigated at arbitrary strength of maguetic field by mading use of the method of few-body physics.Discontinuous ground-state energy transitions induced by the magnetic field are reported.The dependence of the binding energy of the D^- ground state on the quantum dot radius is obtained.A considerable enhancement of the binding is found for the D^- ground state,which results from the confinement of electrons and electron-phonon coupling.  相似文献   

16.
We have fabricated a few-electron quantum dot that can be tuned down to zero electrons while maintaining strong coupling to the leads. Using a nearby quantum point contact as a charge sensor, we can determine the absolute number of electrons in the quantum dot. We find several sharp peaks in the differential conductance, occurring at both zero and finite source-drain bias, for the one- and two-electron quantum dot. We attribute the peaks at finite bias to a Kondo effect through excited states of the quantum dot and investigate the magnetic field dependence of these Kondo resonances.  相似文献   

17.
何安民  段素青  赵宪庚 《中国物理》2005,14(11):2320-2324
The effect of external noise, which is characterized by an Ornstein--Uhlenbeck process, on the dynamical localization of two coupling electrons in a quantum dot array under the action of an ac electric field is studied. A numerical solution of the stochastic equations is obtained by averaging over stochastic trajectories. The results show that the external noise may destroy the dynamical localization, but the anti-noise capacity of the system is stronger when the two electrons are localized at the ends of the quantum dot array.  相似文献   

18.
The transport properties of a system of two interacting dots, one of them directly connected to the leads constituting a side-coupled configuration (SCD), are studied in the weak and strong tunnel-coupling limits. The conductance behavior of the SCD structure has new and richer physics than the better-studied system of two dots aligned with the leads (ACD). In the weak coupling regime and in the case of one electron per dot, the ACD configuration gives rise to two mostly independent Kondo states. In the SCD topology, the inserted dot is in a Kondo state while the side-connected one presents Coulomb blockade properties. Moreover, the dot spins change their behavior, from an antiferromagnetic coupling to a ferromagnetic correlation, as a consequence of the interaction with the conduction electrons. The system is governed by the Kondo effect related to the dot that is embedded into the leads. The role of the side-connected dot is to introduce, when at resonance, a new path for the electrons to go through giving rise to the interferences responsible for the suppression of the conductance. These results depend on the values of the intra-dot Coulomb interactions. In the case where the many-body interaction is restricted to the side-connected dot, its Kondo correlation is responsible for the scattering of the conduction electrons giving rise to the conductance suppression.Received: 7 February 2004, Published online: 24 September 2004PACS: 73.63.-b Electronic transport in nanoscale materials and structures - 73.63.Kv Quantum dots  相似文献   

19.
We address the problem of transmission of electrons between two noninteracting leads through a region where they interact (quantum dot). We use a model of spinless electrons hopping on a one-dimensional lattice and with an interaction on a single bond. We show that all two-particle scattering states can be found exactly. Comparisons are made with numerical results on the time evolution of a two-particle wave packet, and several interesting features are found. For N particles, the scattering state is obtained within a two-particle scattering approximation. For a dot connected to Fermi seas at different chemical potentials, we find an expression for the change in the Landauer current resulting from the interactions on the dot. We end with some comments on the case of spin-1/2 electrons.  相似文献   

20.
Hartree-Fock approximation of bipolaron state in quantum dots and wires   总被引:1,自引:0,他引:1  
The bipolaronic ground state of two electrons in a spherical quantum dot or a quantum wire with parabolic boundaries is studied in the strong electron-phonon coupling regime. We introduce a variational wave function that can conveniently conform to represent alternative ground state configurations of the two electrons, namely, the bipolaronic bound state, the state of two individual polarons, and two nearby interacting polarons confined by the external potential. In the bipolaron state the electrons are found to be separated by a finite distance about a polaron size. We present the formation and stability criteria of bipolaronic phase in confined media. It is shown that the quantum dot confinement extends the domain of stability of the bipolaronic bound state of two electrons as compared to the bulk geometry, whereas the quantum wire geometry aggravates the formation of stable bipolarons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号