首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Profiles and values of pressure in shock waves are determined for the case of spherical, linear, and spatial charges, such as a coil of a bulk spiral and plane annular coils and Archimedes’ spiral of various lenths, exploded in air. In the case of explosion of rings and spirals, a complex wave structure in the form of a sequence of several shock waves is registered near the charges along the spiral axes; a weaker attenuation of shock waves with distance and pressure amplitudes two to three times higher than in the case of a spherical charge of the same mass are observed. It was found that an increase in the length of a plane spiral does not lead to an increase in the maximum pressure in the shock wave at distances of the order of several pitches of the spiral from its plane. With distance from spatial charges of different shape but identical mass, the pressure values in the shock-wave fronts coincide and tend asymptotically to the parameters of a spherical explosion with a significant increase in the duration of a wave packet generated by the spatial charge. Dependences for evaluation of shock-wave pressure amplitudes in the near zone of the explosion are presented. Lavrent’ev Institute of Hydrodynamics, Siberian Division, Russian Academy of Sciences, Novosibirsk 630090. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 41, No. 5, pp. 81–90, September–October, 2000.  相似文献   

2.
徐维铮  黄超  张磐  黄宇  曾繁  王星  郑贤旭 《爆炸与冲击》2022,42(1):014203-1-014203-9
为了计算锥形长药柱水下爆炸冲击波压力,以及研究长脉宽冲击波的传输特性,基于叠加原理建立了冲击波压力-时间曲线的计算方法,通过实验验证了该方法的有效性,在此基础上分析了锥形长药柱不同方位冲击波压力的分布规律。研究结果表明:锥形长药柱产生的冲击波压力具有各向异性,在起爆端一侧形成的是具有厚波头特征的低幅值长脉宽冲击波,在装药径向形成的是接近指数衰减的高幅值冲击波,而在远离起爆端的冲击波压力幅值和脉宽则介于前两者之间。锥形长药柱与球形装药冲击波分布的差异是由于装药形状和起爆方式的改变所导致的,由于装药不同部位起爆的时间差,导致水下爆炸冲击波在不同位置的叠加效果存在明显差异,药柱周围流场中形成的冲击波压力具有方向性。利用提出的计算方法得到的计算结果与实验结果和数值模拟结果吻合较好,研究结果可为锥形长药柱水下爆炸冲击波威力场和毁伤评估提供参考和依据。  相似文献   

3.
We have used a third-order essentially non-oscillatory method to obtain numerical shadowgraphs for investigation of shock–vortex interaction patterns. To search different interaction patterns, we have tested two vortex models (the composite vortex model and the Taylor vortex model) and as many as 47 parametric data sets. By shock–vortex interaction, the impinging shock is deformed to a S-shape with leading and lagging parts of the shock. The vortex flow is locally accelerated by the leading shock and locally decelerated by the lagging shock, having a severely elongated vortex core with two vertices. When the leading shock escapes the vortex, implosion effect creates a high pressure in the vertex area where the flow had been most expanded. This compressed region spreads in time with two frontal waves, an induced expansion wave and an induced compression wave. They are subsonic waves when the shock–vortex interaction is weak but become supersonic waves for strong interactions. Under a intermediate interaction, however, an induced shock wave is first developed where flow speed is supersonic but is dissipated where the incoming flow is subsonic. We have identified three different interaction patterns that depend on the vortex flow regime characterized by the shock–vortex interaction.   相似文献   

4.
Lighthill (Proc. R. Soc. A 198, 454–470, 1949) considered the diffraction of a normal shock wave passing over a small bend. The bend being small Lighthill was able to linearize the flow equations and solved the problem through several mathematical techniques. Following Lighthill (Proc. R. Soc. A 198, 454–470, 1949), Srivastava and Chopra (J. Fluid Mech. 40, 821–831, 1970) extended the work to the diffraction of oblique shock waves. Srivastava (AIAAJ 33, 2230–2231, 1995) considered the problem of starting point of curvature and extended the work to yawed wedges (Srivastava in Proceedings of the 14th International Mach reflection symposium Sun Marina Hotel, Yonezawa, Japan, 1–5 October 2000, pp. 225–249, 2002). Srivastava (Shock waves 13, 323–326, 2003) considered the problem for starting point of curvature when the relative outflow behind reflected shock before diffraction has been subsonic and sonic. The present work is an extension of the work published in Srivastava (Shock waves 13, 323–326, 2003) when the wedge has been yawed through an angle. The results have been obtained for two angles χ = 60° and χ = 40° (χ is the angle of yaw).   相似文献   

5.
The transition from regular to Mach interaction is investigated in connection with the interaction of two plane weak or moderate shock waves of different intensity in a two-phase gas-liquid medium over the entire range of gas contents. A nonmonotonic dependence of the transition limit and the flow parameters on the gas content is detected. The investigation extends the results of [1] corresponding to the reflection of a shock wave from a wall. At intermediate gas contents in the case of opposing shock waves, analogous to the normal reflection of a shock wave from a solid wall, the results are in agreement with [2]. In the case of weak shock waves non-linear asymptotic expansions [3] are employed. In the extreme cases of single-phase media the results coincide with the findings of [3, 4]. Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 172–174, November–December, 1986.  相似文献   

6.
Detonation initiation resulting from the Richtmyer–Meshkov instability is investigated numerically in the configuration of the shock/spark-induced-deflagration interaction in a combustive gas mixture. Two-dimensional multi-species Navier–Stokes equations implemented with the detailed chemical reaction model are solved with the dispersion-controlled dissipative scheme. Numerical results show that the spark can create a blast wave and ignite deflagrations. Then, the deflagration waves are enhanced due to the Richtmyer–Meshkov instability, which provides detonation initiations with local environment conditions. By examining the deflagration fronts, two kinds of the initiation mechanisms are identified. One is referred to as the deflagration front acceleration with the help of the weak shock wave, occurring on the convex surfaces, and the other is the hot spot explosion deriving from the deflagration front focusing, occurring on the concave surfaces. The project supported by the National Natural Science Foundation of China (90205027 and 10632090).  相似文献   

7.
Parameters of emitting shock waves in gases are investigated in the limiting case when there is no screening of emission from the shock front by the precursory layer. The one-dimensional quasi-steady-state formulation of the problem with deceleration of high-speed gas flow against a plane fixed obstacle under conditions of strong emission is given. The case of the shock waves of large optical thickness is analytically considered over a wide range of variation of the obstacle reflectivity. The parameters of emitting shock waves generated in experiments in shock tubes in the inert argon gas are estimated using the methods developed and compared with the measurement results. The shock “adiabats” of optically thick shock waves are considered with allowance for the radiation energy losses. The calculations are carried out for aluminium plasma.  相似文献   

8.
This paper investigates the flow field near three intersecting shock waves appearing in steady Mach reflection. Results of numerical computations reveal a “von Neumann Paradox”—like feature for weak shock waves, in which the flow field between the reflected and the Mach stem is smooth with no distinct slip flow region and changes rather smoothly. An analytical solution of the Navier–Stokes equations constructed using a polar–coordinate system gives a flow field with the same properties as the numerical simulation.  相似文献   

9.
Triple shock-wave configurations in steady supersonic flows of an inviscid perfect gas are considered. Triple configurations with special intensities of shock waves and extreme ratios of various flow parameters behind these configurations are determined. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 47, No. 4, pp. 39–53, July–August, 2006.  相似文献   

10.
Characteristics of unsteady type IV shock/shock interaction   总被引:1,自引:0,他引:1  
Characteristics of the unsteady type IV shock/shock interaction of hypersonic blunt body flows are investigated by solving the Navier–Stokes equations with high-order numerical methods. The intrinsic relations of flow structures to shear, compression, and heating processes are studied and the physical mechanisms of the unsteady flow evolution are revealed. It is found that the instantaneous surface-heating peak is caused by the fluid in the “hot spot” generated by an oscillating and deforming jet bow shock (JBS) just ahead of the body surface. The features of local shock/boundary layer interaction and vortex/boundary layer interaction are clarified. Based on the analysis of flow evolution, it is identified that the upstream-propagating compression waves are associated with the interaction of the JBS and the shear layers formed by a supersonic impinging jet, and then the interaction of the freestream bow shocks and the compression waves results in entropy and vortical waves propagating to the body surface. Further, the feedback mechanism of the inherent unsteadiness of the flow field is revealed to be related to the impinging jet. A feedback model is proposed to reliably predict the dominant frequency of flow evolution. The results obtained in this study provide physical insight into the understanding of the mechanisms relevant to this complex flow.  相似文献   

11.
Second-order differential equations of the hyperbolic type are derived for describing the local law of shock wave propagation. The shock waves are assumed to be two-dimensional unsteady in a stationary gas flow and three-dimensional steady in a supersonic flow. The behavior of the characteristics of these equations is investigated as a function of the governing flow parameters and their relative position with respect to the typical bicharacteristics of the characteristic cone behind the shock is analyzed. Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 3, pp. 159–165, May–June, 2000.  相似文献   

12.
This paper describes application of a background oriented schlieren technique in order to obtain quantitative measurements of shock waves from explosions by processing high speed digital video recordings. The technique is illustrated by an analysis of two explosions, a high explosive test and a hydrogen gas explosion test. The visualization of the shock front is utilized to calculate the shock Mach number, leading to a predicted shock front pressure. For high explosives the method agreed quite well with a standard curve for side-on shock pressures. In the case of the gas explosion test we can also show that the shock front is non-spherical. It should be possible to develop this technique to investigate external blast waves and external explosions from vented gas explosions in more details. This paper is based on work that was presented at the 21th International Colloquium on the Dynamics of Explosions and Reactive Systems, Poitiers, France, July 23–27, 2007.  相似文献   

13.
An experimental investigation of a spark discharge in argon is described. The existence of a shock wave and a following thermal wave is demonstrated. The experimental law of propagation of the thermal wave front is obtained. The effect of the discharge parameters on the dynamics of both waves is studied. The interaction between the cylindrical shock waves generated by a pulsed induction discharge and the shock waves formed in a spark discharge is considered. Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 1, pp. 166–170, January–February, 1994.  相似文献   

14.
An approximate analytical model for calculation of the parameters of a steady gas flow inside a plane constricting channel formed by two symmetrically positioned wedges is suggested. A Mach configuration of shock waves (triple point) is formed in the channel when the wedge angles are larger than some critical value. The flow calculation in a constricting channel reduces to the solution of the iterative problem for a system of nonlinear algebraic equations. The configurations of shock waves, the slipstream, and the sonic line are described by the proposed model of a gas flow. A comparison of the results obtained using this model allows a fairly accurate calculation of the Mach stem and the length of the subsonic-flow region. Institute of Theoretical and Applied Mechanics, Siberian Division, Russian Academy of Sciences, Novosibirsk 630090. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 39, No. 3, pp. 52–58, May–June, 1998.  相似文献   

15.
The process of propagation of shock waves in two-component mixtures is considered. The studies were performed within the framework of the two-velocity approximation of mechanics of heterogeneous media with account of different pressures of the components. The stability of propagation of all types of stationary shock waves (fully dispersed, frozen-dispersed, dispersed-frozen, and frozen shock waves of two-front configuration) to infinitesimal and finite perturbations is shown numerically, using the method of coarse particles. The problem of initiation of shock waves (the formation of different types of shock waves from stepwise initial data) is solved. Flows in the transonic range relative to the speed of sound in the first component are obtained. Institute of Theoretical and Applied Mechanics, Siberian Division, Russian Academy of Sciences, Novosibirsk 630090. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 40, No. 1, pp. 55–63, January–February 1999.  相似文献   

16.
Nonlinear evolution of hydroelastic instability arising in the flow past a coating of a rubber-type material by a turbulent boundary layer of an incompressible fluid is studied. A nonlinear dispersion equation for two-dimensional, quasi-monochromatic, low-amplitude waves is derived. The Prandtl equations for the mean (over the waviness period) boundary-layer flow are solved in the approximation of local similarity and by direct numerical integration. Evolution of unstable waves in time is studied on the basis of the Landau equation, which is derived separately for the instability of fast waves (flutter) and the quasi-static instability (divergence). The calculation results are compared with available experimental data. Institute of Applied Physics, Russian Academy of Sciences, Nizhnii Novgorod 603600. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 41, No. 4, pp. 69–80, July–August, 2000.  相似文献   

17.
Experimental studies were made of the state behind a shock wave arising in front of a pulse jet in formation, and the development of the vortex structure of the jet itself. A comparison was made of the experimental axial density distribution in the jet in the region between the front of the gas and the primary shock wave with the solutions to the problem of an expanding spherical piston and the nonself-similar problem of a point explosion. Moscow Translated from Izvestiya, Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 146–150, September–October, 1988.  相似文献   

18.
The problem of the shock-wave structure in a mixture of two compressible media with different velocities and pressures of components is considered. The problem is reduced to solving a boundary-value problem for two ordinary differential equations that describe the velocity relaxation and pressure equalization of the components. Using methods of the qualitative theory of dynamic systems on a plane, the existence and uniqueness of four types of waves are shown: (a) fully dispersed waves; (b) frozen-dispersed waves; (c) dispersed-frozen waves; (d) frozen waves of two-front configuration. A chart of solutions of the corresponding flow types is constructed in the plane of the following parameters: the initial velocity of the mixture and the initial volume concentration of one of the components. The numerical calculations conducted illustrate the obtained analytical structures of the shock wave. It is shown that the results obtained using the suggested mathematical model are in agreement with experimental data on the dependence of the velocity of the dispersed shock wave on the equilibrium pressure behind the shock-wave front for a mixture of silica sand and water. Institute of Theoretical and Applied Mechanics, Siberian Division, Russian Academy of Sciences, Novosibirsk 630090. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 39, No. 2, pp. 10–19, March–April, 1998.  相似文献   

19.
The pattern of disturbances arising during the motion of a strip along a horizontal surface in a continuously stratified fluid with identified upstream and attached internal waves, boundary layers, and edge singularities is calculated in the liner approximation. The flow pattern behind a flat plate moving with a constant velocity in a continuously stratified fluid is studied with the use of the optical schlieren technique; transformation of waves and finely structured elements of the flow with increasing plate velocity is analyzed. The calculated and experimentally observed patterns of internal waves at low velocities are demonstrated to be in good agreement. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 48, No. 6, pp. 77–91, November–December, 2007.  相似文献   

20.
Based on the previously formulated mathematical model of mechanics of a two-velocity two-temperature mixture of gases, the evolution of an initially disturbed mixing layer of two gases with different densities under the action of shock waves is considered in a two-dimensional unsteady approximation. Problems of interaction of shock waves with a sinusoidally disturbed diffuse layer are solved numerically. The predicted variation of the mixing-region width are in satisfactory agreement with experimental data. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 46, No. 3, pp. 3–11, May–June, 2005.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号