首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A graph G is (1, 0)-colorable if its vertex set can be partitioned into subsets V 1 and V 0 so that in G[V 1] every vertex has degree at most 1, while G[V 0] is edgeless. We prove that every graph with maximum average degree at most $\tfrac{{12}} {5} $\tfrac{{12}} {5} is (1, 0)-colorable. In particular, every planar graph with girth at least 12 is (1, 0)-colorable. On the other hand, we construct graphs with the maximum average degree arbitrarily close (from above) to $\tfrac{{12}} {5} $\tfrac{{12}} {5} which are not (1, 0)-colorable.  相似文献   

2.
A graph, G, is called uniquely Hamiltonian if it contains exactly one Hamilton cycle. We show that if G=(V, E) is uniquely Hamiltonian then Where #(G)=1 if G has even number of vertices and 2 if G has odd number of vertices. It follows that every n-vertex uniquely Hamiltonian graph contains a vertex whose degree is at most c log2n+2 where c=(log23−1)−1≈1.71 thereby improving a bound given by Bondy and Jackson [3].  相似文献   

3.
Untangling is a process in which some vertices in a drawing of a planar graph are moved to obtain a straight-line plane drawing. The aim is to move as few vertices as possible. We present an algorithm that untangles the cycle graph C n while keeping Ω(n 2/3) vertices fixed. For any connected graph G, we also present an upper bound on the number of fixed vertices in the worst case. The bound is a function of the number of vertices, maximum degree, and diameter of G. One consequence is that every 3-connected planar graph has a drawing δ such that at most O((nlog n)2/3) vertices are fixed in every untangling of δ.  相似文献   

4.
 A set AV of the vertices of a graph G=(V,E) is an asteroidal set if for each vertex aA, the set A\{a} is contained in one component of GN[a]. The maximum cardinality of an asteroidal set of G, denoted by an (G), is said to be the asteroidal number of G. We investigate structural properties of graphs of bounded asteroidal number. For every k≥1, an (G)≤k if and only if an (H)≤k for every minimal triangulation H of G. A dominating target is a set D of vertices such that DS is a dominating set of G for every set S such that G[DS] is connected. We show that every graph G has a dominating target with at most an (G) vertices. Finally, a connected graph G has a spanning tree T such that d T (x,y)−d G (x,y)≤3·|D|−1 for every pair x,y of vertices and every dominating target D of G. Received: July 3, 1998 Final version received: August 10, 1999  相似文献   

5.
 For two vertices u and v of a connected graph G, the set I[u,v] consists of all those vertices lying on a uv shortest path in G, while for a set S of vertices of G, the set I[S] is the union of all sets I[u,v] for u,vS. A set S is convex if I[S]=S. The convexity number con(G) of G is the maximum cardinality of a proper convex set of G. The clique number ω(G) is the maximum cardinality of a clique in G. If G is a connected graph of order n that is not complete, then n≥3 and 2≤ω(G)≤con(G)≤n−1. It is shown that for every triple l,k,n of integers with n≥3 and 2≤lkn−1, there exists a noncomplete connected graph G of order n with ω(G)=l and con(G)=k. Other results on convex numbers are also presented. Received: August 19, 1998 Final version received: May 17, 2000  相似文献   

6.
A three-valued function f: V → {−1, 0, 1} defined on the vertices of a graph G= (V, E) is a minus total dominating function (MTDF) if the sum of its function values over any open neighborhood is at least one. That is, for every υV, f(N(υ)) ⩾ 1, where N(υ) consists of every vertex adjacent to υ. The weight of an MTDF is f(V) = Σf(υ), over all vertices υV. The minus total domination number of a graph G, denoted γ t (G), equals the minimum weight of an MTDF of G. In this paper, we discuss some properties of minus total domination on a graph G and obtain a few lower bounds for γ t (G).  相似文献   

7.
A set D of vertices of a graph G = (V, E) is called a dominating set if every vertex of V not in D is adjacent to a vertex of D. In 1996, Reed proved that every graph of order n with minimum degree at least 3 has a dominating set of cardinality at most 3n/8. In this paper we generalize Reed's result. We show that every graph G of order n with minimum degree at least 2 has a dominating set of cardinality at most (3n +IV21)/8, where V2 denotes the set of vertices of degree 2 in G. As an application of the above result, we show that for k ≥ 1, the k-restricted domination number rk (G, γ) ≤ (3n+5k)/8 for all graphs of order n with minimum degree at least 3.  相似文献   

8.
A friendship graph is a graph in which every two distinct vertices have exactly one common neighbor. All finite friendship graphs are known, each of them consists of triangles having a common vertex. We extend friendship graphs to two-graphs, a two-graph being an ordered pair G = (G 0, G 1) of edge-disjoint graphs G 0 and G 1 on the same vertex-set V(G 0) = V(G 1). One may think that the edges of G are colored with colors 0 and 1. In a friendship two-graph, every unordered pair of distinct vertices u, v is connected by a unique bicolored 2-path. The pairs of adjacency matrices of friendship two-graphs are solutions to the matrix equation AB + BA = JI, where A and B are n × n symmetric 0 − 1 matrices, J is an n × n matrix with every entry being 1, and I is the identity n × n matrix. We show that there is no finite friendship two-graph with minimum vertex degree at most two. However, we construct an infinite such graph, and this construction can be extended to an infinite (uncountable) family. Also, we find a finite friendship two-graph, conjecture that it is unique, and prove this conjecture for the two-graphs that have a dominating vertex.  相似文献   

9.
In 1990 G. T. Chen proved that if G is a 2-connected graph of order n and 2|N(x) ∪ N(y)| + d(x) + d(y) ≥ 2n − 1 for each pair of nonadjacent vertices x, yV (G), then G is Hamiltonian. In this paper we prove that if G is a 2-connected graph of order n and 2|N(x) ∪ N(y)| + d(x)+d(y) ≥ 2n−1 for each pair of nonadjacent vertices x, yV (G) such that d(x, y) = 2, then G is Hamiltonian.  相似文献   

10.
Let G be a simple graph with n vertices. For any v ? V(G){v \in V(G)} , let N(v)={u ? V(G): uv ? E(G)}{N(v)=\{u \in V(G): uv \in E(G)\}} , NC(G) = min{|N(u) èN(v)|: u, v ? V(G){NC(G)= \min \{|N(u) \cup N(v)|: u, v \in V(G)} and uv \not ? E(G)}{uv \not \in E(G)\}} , and NC2(G) = min{|N(u) èN(v)|: u, v ? V(G){NC_2(G)= \min\{|N(u) \cup N(v)|: u, v \in V(G)} and u and v has distance 2 in E(G)}. Let l ≥ 1 be an integer. A graph G on nl vertices is [l, n]-pan-connected if for any u, v ? V(G){u, v \in V(G)} , and any integer m with lmn, G has a (u, v)-path of length m. In 1998, Wei and Zhu (Graphs Combinatorics 14:263–274, 1998) proved that for a three-connected graph on n ≥ 7 vertices, if NC(G) ≥ n − δ(G) + 1, then G is [6, n]-pan-connected. They conjectured that such graphs should be [5, n]-pan-connected. In this paper, we prove that for a three-connected graph on n ≥ 7 vertices, if NC 2(G) ≥ n − δ(G) + 1, then G is [5, n]-pan-connected. Consequently, the conjecture of Wei and Zhu is proved as NC 2(G) ≥ NC(G). Furthermore, we show that the lower bound is best possible and characterize all 2-connected graphs with NC 2(G) ≥ n − δ(G) + 1 which are not [4, n]-pan-connected.  相似文献   

11.
A graph G is (k,0)‐colorable if its vertices can be partitioned into subsets V1 and V2 such that in G[V1] every vertex has degree at most k, while G[V2] is edgeless. For every integer k?0, we prove that every graph with the maximum average degree smaller than (3k+4)/(k+2) is (k,0)‐colorable. In particular, it follows that every planar graph with girth at least 7 is (8, 0)‐colorable. On the other hand, we construct planar graphs with girth 6 that are not (k,0)‐colorable for arbitrarily large k. © 2009 Wiley Periodicals, Inc. J Graph Theory 65:83–93, 2010  相似文献   

12.
Let φ(G),κ(G),α(G),χ(G),cl(G),diam(G)denote the number of perfect matchings,connectivity,independence number,chromatic number,clique number and diameter of a graph G,respectively.In this note,by constructing some extremal graphs,the following extremal problems are solved:1.max{φ(G):|V(G)|=2n,κ(G)≤k}=k[(2n-3)!!],2.max{φ(G):|V(G)|=2n,α(G)≥k}=[multiply from i=0 to k-1(2n-k-i)[(2n-2k-1)!!],3.max{φ(G):|V(G)|=2n,χ(G)≤k}=φ(T_(k,2n))T_(k,2n)is the Turán graph,that is a complete k-partite graphon 2n vertices in which all parts are as equal in size as possible,4.max{φ(G):|V(G)|=2n,cl(G)=2}=n1,5.max{φ(G):|V(G)|=2n,diam(G)≥2}=(2n-2)(2n-3)[(2n-5)!!],max{φ(G):|V(G)|=2n,diam(G)≥3}=(n-1)~2[(2n-5)!!].  相似文献   

13.
A set S of vertices of a graph G = (V, E) without isolated vertex is a total dominating set if every vertex of V(G) is adjacent to some vertex in S. The total domination number γ t (G) is the minimum cardinality of a total dominating set of G. The total domination subdivision number sdγt (G) is the minimum number of edges that must be subdivided (each edge in G can be subdivided at most once) in order to increase the total domination number. Karami, Khoeilar, Sheikholeslami and Khodkar, (Graphs and Combinatorics, 2009, 25, 727–733) proved that for any connected graph G of order n ≥ 3, sdγ t (G) ≤ 2γ t (G) − 1 and posed the following problem: Characterize the graphs that achieve the aforementioned upper bound. In this paper we first prove that sdγ t (G) ≤ 2α′(G) for every connected graph G of order n ≥ 3 and δ(G) ≥ 2 where α′(G) is the maximum number of edges in a matching in G and then we characterize all connected graphs G with sdγ t (G)=2γ t (G)−1.  相似文献   

14.
Let G = (V, E) be a graph. A set S í V{S \subseteq V} is a total restrained dominating set if every vertex is adjacent to a vertex in S and every vertex of VS is adjacent to a vertex in VS. The total restrained domination number of G, denoted by γ tr (G), is the smallest cardinality of a total restrained dominating set of G. We show that if δ ≥ 3, then γ tr (G) ≤ nδ − 2 provided G is not one of several forbidden graphs. Furthermore, we show that if G is r − regular, where 4 ≤ r ≤ n − 3, then γ tr (G) ≤ n − diam(G) − r + 1.  相似文献   

15.
A pathP in a graphG is said to beextendable if there exists a pathP’ inG with the same endvertices asP such thatV(P)⊆V (P’) and |V(P’)|=|V(P)|+1. A graphG ispath extendable if every nonhamiltonian path inG is extendable. We investigate the extent to which known sufficient conditions for a graph to be hamiltonian-connected imply the extendability of paths in the graph. Several theorems are proved: for example, it is shown that ifG is a graph of orderp in which the degree sum of each pair of non-adjacent vertices is at leastp+1 andP is a nonextendable path of orderk inG thenk≤(p+1)/2 and 〈V (P)〉≅K k orK k e. As corollaries of this we deduce that if δ(G)≥(p+2)/2 or if the degree sum of each pair of nonadjacent vertices inG is at least (3p−3)/2 thenG is path extendable, which strengthen results of Williamson [13].  相似文献   

16.
If G is a connected graph of order n ⩾ 1, then by a hamiltonian coloring of G we mean a mapping c of V (G) into the set of all positive integers such that |c(x) − c(y)| ⩾ n − 1 − D G (x, y) (where D G (x, y) denotes the length of a longest xy path in G) for all distinct x, yV (G). Let G be a connected graph. By the hamiltonian chromatic number of G we mean
, where the minimum is taken over all hamiltonian colorings c of G. The main result of this paper can be formulated as follows: Let G be a connected graph of order n ⩾ 3. Assume that there exists a subgraph F of G such that F is a hamiltonian-connected graph of order i, where 2 ⩽ i ⩽ 1/2 (n+1). Then hc(G) ⩽ (n−2)2+1−2(i−1)(i−2).  相似文献   

17.
 Let G be a 2-connected graph with maximum degree Δ (G)≥d, and let x and y be distinct vertices of G. Let W be a subset of V(G)−{x, y} with cardinality at most d−1. Suppose that max{d G(u), d G(v)}≥d for every pair of vertices u and v in V(G)−({x, y}∪W) with d G(u,v)=2. Then x and y are connected by a path of length at least d−|W|. Received: February 5, 1998 Revised: April 13, 1998  相似文献   

18.
Raphael Yuster 《Order》2003,20(2):121-133
Let TT k denote the transitive tournament on k vertices. Let TT(h,k) denote the graph obtained from TT k by replacing each vertex with an independent set of size h≥1. The following result is proved: Let c 2=1/2, c 3=5/6 and c k =1−2k−log k for k≥4. For every ∈>0 there exists N=N(∈,h,k) such that for every undirected graph G with n>N vertices and with δ(G)≥c k n, every orientation of G contains vertex disjoint copies of TT(h,k) that cover all but at most ∈n vertices. In the cases k=2 and k=3 the result is asymptotically tight. For k≥4, c k cannot be improved to less than 1−2−0.5k(1+o(1)). This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
We say that a graph G is quasi claw-free if every pair (a 1, a 2) of vertices at distance 2 satisfies {uN (a 1)∩N (a 2) | N[u]⊆N[a 1]∪N [a 2]}≠∅. A cycle C is m-dominating if every vertex of G is of distance at most m from C. We prove that if G is a κ-connected (κ≥2) quasi claw-free graph then either G has an m-dominating cycle or G has a set of at least κ+1 vertices such that the distance between every pair of them is at least 2m+3. Received: June 12, 1996 Revised: November 9, 1998  相似文献   

20.
Let G = (V,E) be a graph and let S V. The set S is a packing in G if the vertices of S are pairwise at distance at least three apart in G. The set S is a dominating set (DS) if every vertex in VS is adjacent to a vertex in S. Further, if every vertex in VS is also adjacent to a vertex in VS, then S is a restrained dominating set (RDS). The domination number of G, denoted by γ(G), is the minimum cardinality of a DS of G, while the restrained domination number of G, denoted by γr(G), is the minimum cardinality of a RDS of G. The graph G is γ-excellent if every vertex of G belongs to some minimum DS of G. A constructive characterization of trees with equal domination and restrained domination numbers is presented. As a consequence of this characterization we show that the following statements are equivalent: (i) T is a tree with γ(T)=γr(T); (ii) T is a γ-excellent tree and TK2; and (iii) T is a tree that has a unique maximum packing and this set is a dominating set of T. We show that if T is a tree of order n with ℓ leaves, then γr(T) ≤ (n + ℓ + 1)/2, and we characterize those trees achieving equality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号