首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Monoolein (MO) cubic phase including alginate and cystamine in its water channel controlled the release of epidermal growth factor (EGF) by responding to changes in pH value and the reductive conditions of the release medium. The crosslinking degree of alginate gel with cystamine and the complex coacervation of alginate and EGF were investigated by using light scattering. TEM micrographs of cubic phases revealed MO bilayers along with water channels. Differential scanning calorimetry indicated that the cubic-to-hexagonal phase transition took place at 60.2?°C. Additives such as stearyl trimethyl ammonium chloride and cystamine decreased the transition temperature by a few to more than 10?°C. The release of EGF loaded in cubic phases was completed in 5?h and, thereafter, no significant additional release was observed. The release % of EGF loaded in MO cubic phase containing alginate and cystamine increased not only with the increase of pH but also glutathione concentration. The MO cubic phase containing alginate/cystamine gel can be used as a carrier for the delivery of peptide and protein drugs.  相似文献   

2.
An introduction of nonlamellar-forming lipids into planar bilayers generates packing stress, which is important for the biological functions of plasma membranes and is a driving force for the lamellar-nonlamellar phase transition. We have investigated the phase behavior of a binary system consisting of egg yolk phosphatidylcholine and monoolein (MO) and the changes in the local orientation order of lipids in a lamellar-bicontinuous cubic phase transition. Small-angle X-ray scattering has revealed that the lamellar-bicontinuous cubic phase transition occurs at an MO molar fraction (X(MO)) between 0.6 and 0.7. These phases were dispersed to form liposomes and cubosomes to monitor the anisotropy of the incorporated fluorescence probe, in which Pluronic F127, used as a dispersion stabilizer of the cubic phase, has been proven not to alter the cubic structure and the location of the probes. Time-resolved fluorescence anisotropy measurements on these dispersions have revealed that the order parameter of the probe in the lamellar phase increases with increasing X(MO), and that it decreases during the transition to the cubic phase. This observation suggests that packing stress generated by the addition of the nonlamellar-forming lipid is released by the phase transition.  相似文献   

3.
Salt-responsive monoolein (MO) cubic phase was prepared by in situ ionically gelling alginate contained in its water channels. On the TEM micrographs, bilayers, and water channels, characteristic of MO cubic phase were observed, and alginate and CaCl2 had little effect on the structure. According to the differential scanning calorimetric thermogram, the cubic-to-hexagonal phase transition temperature of the cubic phase containing CaCl2 solution was 46.8°C and it was much lower than that of the cubic phase containing distilled water, 60.5°C. The transition temperature was not significantly affected by alginate. The phase transition temperatures measured by the calorimetric analysis were in accordance with those determined by polarized optical microscopy. An initial burst release of dye (i.e., amaranth) was observed when the gelled alginate was not contained in the water channel of the cubic phase. A sustained release was obtained with the cubic phase containing the gelled alginate. The release of dye loaded in the cubic phase containing the gelled alginate was significantly promoted when the cubic phase came into contact with PBS (10?mM, pH 7.4), possibly because the multivalent cation (Ca2+) bound to alginate chains could be replaced by the monovalent cation (Na+).  相似文献   

4.
The adsorption kinetics of extruded 1,2-dipalmitoyl- sn-glycero-3-phosphatidylcholine (DPPC)/1-(cis-9-octadecenoyl)- rac-glycerol (monoolein, MO) aggregates on SiO 2 surface at 25 degrees C is investigated in real time, using the dissipative quartz crystal microbalance (QCM) technique. Four adsorption pathways have been identified depending on the molar fraction of MO in the DPPC/MO system: (I) intact vesicle adsorption, (II) vesicle reorganization on a SiO 2 surface, (III) supported lipid bilayer (SLB) formation, and (IV) cubosome adsorption. The results can be understood by the fact that DPPC is a lamellar phase-forming lipid, whereas MO prefers the cubic phase. Therefore, the incorporation of MO in DPPC increases the packing parameter. Equally important, MO also increases the mobility of lipid molecules and lateral pressure in the bilayers as a result of the presence of a unique cis- double bond. Before extrusion, the vesicles size increases with the MO content when X MO or= 0.8. The extruded DPPC/MO suspensions consist of reformed vesicles for X MO or= 0.8, all with a uniform diameter of approximately 100 nm. Differential scanning calorimetry (DSC) further indicates that the addition of MO lowers the main phase transition temperature of DPPC and thus makes the hydrophobic interior more fluid.  相似文献   

5.
Monoolein (MO) cubic phases were prepared by hydrating MO using distilled water or 12 wt.% H2O2 solution so that the content of aqueous phase in the cubic phase is 30 wt.%. The thermal transition of the isotropic cubic phase to reversed hexagonal phase was observed on a polarizing photomicroscope and the transition temperature was found to be around 65 °C on a differential scanning calorimeter (DSC). Small-angle X-ray scattering (SAXS) patterns indicated the cubic phases had diamond surfaces. The cubic phase released H2O2 into an aqueous phase in a saturation manner so that approx. 50% of total loaded H2O2 release in the first 10 h and thereafter relatively slow was observed over 40 h. The cubic phase was stable at 45 °C for 56 days before it broke down into an oily phase and an aqueous phase in 70 days. According to 1H NMR spectrum, glycerol moiety and ---CH2=CH2--- of the oily phase were detected less in number than those of intact MO. Therefore, the hydrolysis and the oxidation of MO would be responsible for the breakdown of the cubic phase. The tensile adhesive forces of the cubic phases were higher than a skin-adhesive patch prepared using polyacrylate. The cubic phase containing H2O2 could be used as a topical disinfected gel for a wounded skin.  相似文献   

6.
Cubic liquid crystalline nanoparticles (cubosomes) of bicontinuous nature with internal networks of water channels have received great interests in nanomedicine applications, particularly as potential vehicle for loading and release of therapeutic agents. These nanoparticles have been most commonly produced using monoolein and phytantriol. In this study, we explore the use of a Guerbet branched chain glycolipid, namely 2-hexyl-decyl-β-D glucopyranoside (β-Glc?OC10C6), as a new and alternative material for cubosomes production. The fully hydrated glycolipid assumes a reverse bicontinuous cubic liquid crystal phase of an Ia3d space group with lattice parameter of ca. 74 Å, as confirmed using a small-angle X-ray scattering. Dynamic light scattering and a conventional transmission electron microscopy were used to investigate the average size and morphology of the cubosomes. The effectiveness of Poloxamer 407 (stabiliser typically used in other cubosome systems against aggregations and particle coalescence) in providing steric stabilisation of the glycolipid cubosomes was assessed through visual assessment.  相似文献   

7.
Attempts to understand the complex 3D morphology of non-lamellar liquid-crystalline nanostructured particles, formed by the dispersion of a reversed hexagonal phase (hexosomes) and bicontinuous cubic phase (cubosomes) in water, have been limited by the lack of suitable 3D imaging techniques. Using cryo-field emission scanning electron microscopy, we show that whereas the structure of cubosomes generally reflects that anticipated from modeling approaches, hexosomes, which were previously proposed to be flat hexagonal prisms, in fact often possess a "spinning-top-like" structure, which is likely to influence their interactions with surfaces.  相似文献   

8.
Bicontinuous cubic phases of monoacylglycerides/Poloxamer 407 (PEO98PPO67PEO98)/water can be dispersed into submicron particles, which are termed "cubosomes". Technological applications of these nanoparticles may be possible, if their nonlamellar architecture can be rendered more robust. To accomplish this goal, a polymerizable heterobifunctional monoacylglycerol, 3-(2,4,13-(E,E)-tetradecatrienoyl)-sn-glycerol (1), was synthesized and combined with water to form an optically transparent gel. In the presence of Poloxamer 407 and excess water the cubic phase of 1 was dispersed by ultrasonication into 300-nm diameter nanoparticles. The polymerization of these reactive cubosomes could be initiated either by the use of a photoinitiator or with redox chemistry. The polymerized cubosomes remained stable even after the addition of excess Triton X-100, in a manner consistent with executing cross-linking in the nanostructures.  相似文献   

9.
Monoolein (MO) cubosomes were investigated in terms of in vitro skin permeation enhancer of KIOM-MA-128 (MA-128), a natural product known to be efficacious against atopic dermatitis. First, an aqueous suspension of MA-128 was prepared by homogenizing the powder in Pluronic F-127 (a dispersant) solution in water. The Pluronic F-127 concentration and the pH have no significant effect on the size and the zeta potential of MA-128 particles. The mean diameters and the zeta potentials fell within 1000–1500 nm and ?10 to ?20 mV, respectively. The sedimentation rate of the particles was lower at a higher concentration of the polymeric dispersant, possibly because the polymeric surfactant can act as a spring and push away approaching particles. The size of MO cubosomes was tens to hundreds of nanometers and exhibited black and white stripes. Cumulative amount of MA-128 permeated through hairless mouse skin was obviously higher when the cubosome was included in the MA-128 suspensions. However, the cumulative permeation amount was inversely proportional to the content of cubosomes, when the contents of cubosome in the suspension increased from 0.5% to 2.0% with MA-128 concentrations kept constant (2%).  相似文献   

10.
Monoglyceride (MO) can form various liquid crystalline phases spontaneously in the presence of various amount of water at room temperature. The appropriate compositions from binary phase diagram of MO/H2O were selected to form cubic phases. The selected systems were studied at different salt concentrations and pH value using rheological methods. There was a weak effect of salt on viscoelastic properties of cubic phases formed from MO/H2O system. Hexagonal phase was formed when pH value was decreased or increased. The viscoelasticity of cubic phases was different from that of hexagonal liquid crystals. Rheological properties of MO/H2O cubic phases were stable at pH and salt concentration similar to physiological condition.  相似文献   

11.
We developed a new method for the transformation of large unilamellar vesicles (LUVs) into the cubic phase. We found that the addition of low concentrations of Ca(2+) to suspensions of multilamellar vesicles (MLVs) of membranes of monoolein (MO) and dioleoylphosphatidylglycerol (DOPG) mixtures (DOPG/MO) changed their L(alpha) phase to the cubic phases. For instance, the addition of 15-25 mM Ca(2+) to 30%-DOPG/70%-MO-MLVs induced the Q(229) phase, whereas the addition of > or =28 mM Ca(2+) induced the Q(224) phase. LUVs of DOPG/MO membranes containing > or =25 mol % DOPG were prepared easily. Low concentrations of Ca(2+) transformed these LUVs in excess buffer into the Q(224) or the Q(229) phase, depending on the Ca(2+) concentration. For example, 15 and 50 mM Ca(2+) induced the Q(224) and Q(229) phase in the 30%-DOPG/70%-MO-LUVs at 25 degrees C, respectively. This finding is the first demonstration of transformation of LUVs of lipid membranes into the cubic phase under excess water condition.  相似文献   

12.
Cubic biomembranes, nonbilayer membranes with connections in three-dimensional space that have a cubic symmetry, have been observed in various cells. Interconversion between the bilayer liquid-crystalline (L(alpha)) phase and cubic phases attracted much attention in terms of both biological and physicochemical aspects. Herein we report the pH effect on the phase and structure of dioleoylphosphatidylserine (DOPS)/monoolein (MO) membranes under a physiological ion concentration condition, which was revealed by small-angle X-ray scattering (SAXS) measurement. At neutral pH, DOPS/MO membranes containing high concentrations of DOPS were in the L(alpha) phase. First, the pH effect on the phase and structure of the multilamellar vesicles (MLVs) of the DOPS/MO membranes preformed at neutral pH was investigated by adding various low-pH buffers into the MLV suspension. For 20%-DOPS/80%-MO MLVs, at and below pH 2.9, a transition from the L(alpha) to cubic (Q(224)) phase occurred within 1 h. This phase transition was reversible; a subsequent increase in pH to a neutral one in the membrane suspension transformed the cubic phase into the original L(alpha) phase. Second, we found that a decrease in pH transformed large unilamellar vesicles of DOPS/MO membranes into the cubic phase under similar conditions. We have proposed the mechanism of the low-pH-induced phase transition and also made a quantitative analysis on the critical pH of the phase transition. This finding is the first demonstration that a change in pH can induce a reversible phase transition between the L(alpha) and cubic phases of lipid membranes within 1 h.  相似文献   

13.
Monoolein (MO) cubic phase incorporating hydrophobically modified chosan (Hm chitosan) was prepared to obtain a pH-dependent release. Following calorimetric study, Hm chitosan had little effect on the crystal structure of MO cubic phase under acidic condition where Hm chitosan is readily soluble. At a higher pH (e.g., pH 9.0), however, the crystal structure of MO cubic phase was disturbed, possibly due to the insolubilization of Hm chitosan at the alkali condition. Whether the dye included in the cubic phase is anionic (amaranth) or cationic (methylene blue), the release from the cubic phase was suppressed as the pH of release medium increased. The structural change of cubic phase caused by the insolubilization of Hm chitosan, or the blockage of the water channel of the cubic phase by precipitated Hm chitosan would be responsible for the suppressed released.  相似文献   

14.
The aqueous phase behavior of phytantriol (PT) in mixtures of monoolein (MO), distearoylphosphatidylglycerol (DSPG), propylene glycol (PG), polyethylene glycol 400 (PEG 400) and 2-methyl-2,4-pentanediol (MPD) was investigated by visual inspection, polarized light microscopy and small angle X-ray diffraction at room temperature. The phase diagrams of PT and MO in water are qualitatively very similar and PT/MO mixtures in excess water form one cubic phase of space group Pn3m irrespective of mixing ratio. The addition of the charged membrane lipid DSPG to the PT system gives rise to a considerable water swelling of the cubic phases as well as the occurrence of a cubic phase of space group Im3m. Whereas all three solvents studied give rise to a sponge (L3) phase in the MO-water system, this phase was only found when MPD was added to the PT-water system. The results are discussed with respect to the chemical differences between PT and MO.  相似文献   

15.
Supramolecular three-dimensional self-assembly of nonlamellar lipids with fragments of the protein immunoglobulin results in a bicontinuous cubic phase fragmented into nanoparticles with open water channels (cubosomes). The structure of the diamond-type cubic nanoparticles is characterized experimentally by freeze-fracture electron microscopy, and it is mathematically modeled with nodal surfaces emphasizing the fluid-like undulations of the cubosomic interfaces. Based on scaling-up and scaling-down approaches, we present stable and intermediate-kind nanoparticles resulting from the cubosomic growth. Our results reveal the smallest stable diamond-type cubosomic entity that can serve as a building block of more complex nanostructured fluid drug delivery vehicles of therapeutic proteins. The evidence presented for lipid-bilayer undulations in the surface region of the protein/lipid cubosomes could have important consequences for possible applications of these hierarchically organized porous nanoparticles.  相似文献   

16.
To elucidate the stability and phase transition of cubic phases of biomembranes with infinite periodic minimal surface is indispensable from biological and physicochemical aspects. In this report, we investigated the effect of positively charged peptide-3K (LLKKK) and poly(L-lysine) on the phase stability of monoolein (MO) membranes containing negatively charged dioleoylphosphatidic acid (DOPA) (i.e., DOPA/MO membranes) using small-angle X-ray scattering. At first, the effect of peptide-3K on 10% DOPA/90% MO membrane in excess water, which is in the Q229 phase, was investigated. At 3.4 mM peptide-3K, a Q229 to Q230 phase transition occurred, and at >3.4 mM peptide-3K, the membrane was in the Q230 phase. Poly(L-lysine) (M(w) 1K-4K) also induced the Q230 phase, but peptide-2K (LLKK) could not induce it in the same membrane. We also investigated the effect of peptide-3K on the multilamellar vesicle (MLV) of 25% DOPA/75% MO membrane, which is in L(alpha) phase. In the absence of peptide, the spacing of MLV was very large (11.3 nm), but at > or = 8 mM peptide-3K, it greatly decreased to a constant value (5.2 nm), irrespective of the peptide concentration, indicating that peptide-3K and the membranes form an electrostatically stabilized aggregation with low water content. Poly(L-lysine) also decreased greatly the spacing of the 25% DOPA/75% MO MLV, indicating the formation of a similar aggregation. To compare the effects of peptide-3K and poly(L-lysine) with that of osmotic stress on stability of the cubic phase, we investigated the effect of poly(ethylene glycol) with molecular weight 7500 (PEG-6K) on the phase stability of 10% DOPA/90% MO membrane. With an increase in PEG-6K concentration, i.e., with an increase in osmotic stress, the most stable phase changed as follows; Q229 (Schwartz's P surface) --> Q224 (D) --> Q230 (G). On the basis of these results, we discuss the mechanism of the effects of the positively charged short peptides (peptide-3K) and poly(L-lysine) on the structure and phase stability of DOPA/MO membranes.  相似文献   

17.
The current study provides a way of extraction for both active NSO and WSE from Nigella sativa seeds using 98% methanol. About 1?kg of ground seeds was macerated by 1:2.5 w/v (g/mL) for 72?hours. After rotary evaporation and 7 days of continuous drying and chilling at 50 and 4?°C, NSO and WSE were obtained at the same instant. Solubility tests of 24 solvents and 11 thin layer chromatographic analyses while 2, 2-diphenyl-1-picrylhydrazyl free radical scavenging assay of NSO (73.66) , WSE (33.32) and NSO?+?WSE (78.22) against ascorbic acid (IC50?=?4.28?mg/mL) was performed. WSE was found to be highly soluble in water and 5% NaOH exhibiting the same Rf value of 0.95 for EtOH:DMSO (9:1) against the honey. WSE has revealed more than twofold higher anti-oxidant activity than others. Formulation of WSE with Tualang honey may provide better targeted hydrophilic drug delivery systems.  相似文献   

18.
A phase diagram, describing the behavior of the polar lipid monoolein (MO), water, and ethyl acetate (EtAc), is here presented as well as results from small angle X-ray scattering. MO is found to have a solubility of 60 wt.% in EtAc at 20 °C. No macroscopic aggregation of MO can, initially, be detected in the binary MO/EtAc solution even though MO forms solid crystals in concentrated samples when times goes by. In case of the ternary system small amounts of water, mainly bound to the lipid head groups, can be incorporated in the liquid EtAc/MO phase as water has a limited solubility in EtAc. For EtAc/water mass ratios below 2/3 EtAc is present into the reversed bicontinuous cubic and lamellar phases present in the binary MO/water system. To conclude, EtAc is mainly partitioned to the lipid membranes, with minor effects on spontaneous curvature. Hence, simple EtAc-addition has an effect similar to dehydration. For EtAc/water ratios above 2/3 the liquid crystalline phases dissolve. The phase behavior is here discussed in view of related phase behaviors for water-miscible solvent/MO/water systems. For instance, an interpretation of the swelling behavior of the sponge phase (L3), present in the water-miscible solvent(s)/MO/water systems, shows that solvents partitioned to the polar domains strongly increases the spontaneous curvature of the MO-films. The reason is probably weaker hydrophobic interactions in interfacial regions. As expected, in case of water-miscible solvents, the ternary phase behaviors can be understood by consider water and water-miscible solvent as one “mixed solvent”.  相似文献   

19.
This work describes the effect of two different surfactants on the internal nanostructure of the kinetically stabilized isasomes (internally self-assembled particles or "somes"), which are a new family of colloidal particles (cubosomes, hexosomes, micellar cubosomes, and emulsified microemulsions, EME). The stabilization of these systems is performed by using the polymeric stabilizer F127. We demonstrate that the internal structure of these oil-free and oil-loaded dispersed particles can be modulated by varying the lipid composition. To achieve this goal, we replaced part of our primary lipid monolinolein (MLO) with diglycerol monooleate (DGMO) or soybean phosphatidylcholine (PC). We found that DGMO has a counter effect to that of tetradecane (TC) and allows us to tune back the self-assembled nanostructure in the TC-loaded dispersions from H2 (hexosomes) to Im3m (cubosomes). Although TC has a higher impact on confined structures than does DGMO, we demonstrate that the addition of DGMO significantly affects the internal structure of the TC-solubilized dispersions and favors the formation of large water channels. PC can also be used to modify the internal structure for MLO-based systems. It is somehow different from DGMO due to the fact that the fully hydrated Pn3m cubic structure in the presence of PC for the TC-free dispersion is preserved after dispersing. The results also indicate that PC is less effective than DGMO for tuning back the TC-loaded internal structure from H2 to cubic phase, in which it makes the confined structure less ordered. In addition, we found that DGMO has a significant effect on the internal structure of isasomes. It increases the water solubilization capacity for dispersed and nondispersed bulk phases. In contrast to the MLO-based dispersions, the present results indicate that F127 plays an important role in the internal structure of these dispersions due to its penetration into the oil-free cubic phase changing the symmetry from Pn3m to Im3m.  相似文献   

20.
Thermo- and UV photo-triggerable monoolein (MO) cubic phases were developed by incorporating poly(hydroxyethyl acrylate-co-coumaryl acrylate-co-octadecyl acrylate) (P(HEA-CA-ODA)) in the cubic phases. P(HEA-CA-ODA)s, for which the HEA/CA/ODA molar ratio was 98.6:0:1.4, 96.7:2.0:1.3, 96.2:2.6:1.2, 95:3.8:1.2, and 92.8:6.1:1.1, calculated on the 1H NMR spectra, were prepared by a free radical reaction. The air–water interfacial tension was inversely proportional to the CA content of the copolymer. The copolymers for which the CA content was 2.6%, 3.8%, and 6.1% exhibited their phase transition temperature in an aqueous solution in the temperature range from 25°C to 40°C. As the CA content was more, the temperature sensitivity was higher and the phase transition temperature was lower. The UV light (254 nm, 6 W)-induced dimerization degree of CA was proportional to its content in the copolymers. The release of fluorescein isothiocyanate-dextran from cubic phases containing P(HEA/CA/ODA)s was promoted by UV light irradiation, possibly due to the photo-induced collapse of the copolymer chains. The release from cubic phases incorporating copolymers, for which the CA content was 3.8% and 6.1%, was enhanced by increasing the releasing medium temperature from 23°C to 37°C, possibly due to the thermal collapse of the copolymer chains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号