首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The polar optical phonon vibrating modes of a quasi-zero-dimensional (Q0D) wurtzite cylindrical quantum dot (QD) are solved exactly based on the dielectric continuum model and Loudon’s uniaxial crystal model. The result shows that there exist four types of polar mixing optical phonon modes in the Q0D wurtzite cylindrical QD systems, which is obviously different from the situation in blende cylindrical QDs. The dispersive equations for the interface-optical-propagating (IO-PR) mixing modes are deduced and discussed. It is found that the dispersive frequency of IO-PR mixing modes in wurtzite QD just take a series of discrete values due to the three-dimensional confined properties. Moreover, once the radius or the height of the QD approach infinity, the dispersive equations of the IO-PR mixing modes in the wurtzite Q0D cylindrical QD can naturally reduce to those of the IO and PR modes in Q2D QWs or Q1D QWWs systems. This has been analyzed reasonably from both physical and mathematical viewpoints. The analytical expressions obtained in the paper are useful for further investigating phonon influence on physical properties of the wurtzite Q0D QD systems.  相似文献   

2.
The properties of polar optical phonon vibrations in a quasi-zero- dimensional (QOD) anisotropic wurtzite cylindrical quantum dot (QD) are analyzed based on the dielectric continuum model and Loudon's uniaxial crystal model. The analytical electrostatic potentials of the phonon vibrations in the systems are deduced and solved exactly. The result shows that there exist four types of polar mixing optical phonon modes in the QOD wurtzite cylindrical QD systems. The dispersive equations and electron-phonon coupling function for the quasi-confined-half-space (QC-HS) mixing modes are derived and discussed. It is found that once the radius or the height of the QD approach infinity, the dispersive equations of the QC-HS mixing modes in the QOD cylindrical QD can naturally reduce to those of the QC and HS modes in Q2D QWs or Q1D QWWs systems. This has been analyzed reasonably from both of physicM and mathematical viewpoints.  相似文献   

3.
ZHANG Li   《理论物理通讯》2007,48(9):571-576
The properties of polar optical phonon vibrations in a quasi-zero- dimensional (Q0D) anisotropic wurtzite cylindrical quantum dot (QD) are analyzed based on the dielectric continuum model and Loudon's uniaxial crystal model.The analytical electrostatic potentials of the phonon vibrations in the systems are deduced and solved exactly. The result shows that there exist four types of polar mixing optical phonon modes in the Q0D wurtzite cylindrical QD systems. The dispersive equations and electron-phonon coupling function for the quasi-confined-half-space (QC-HS) mixing modes are derived and discussed. It is found that once the radius or the height of the QD approach infinity, the dispersive equations of the QC-HS mixing modes in the Q0D cylindrical QD can naturally reduce to those of the QC and HS modes in Q2D QWs or Q1D QWWs systems. This has been analyzed reasonably from both of physical and mathematical viewpoints.  相似文献   

4.
Within the framework of the macroscopic dielectric continuum model and Loudon's uniaxial crystal model, the phonon modes of a wurtzite/zinc-blende one-dimensional (1D) cylindrical nanowire (NW) are derived and studied. The analytical phonon states of phonon modes are given. It is found that there exist two types of polar phonon modes, i.e. interface optical (IO) phonon modes and the quasi-confined (QC) phonon modes existing in 1D wurtzite/zinc-blende NWs. Via the standard procedure of field quantization, the Fröhlich electron-phonon interaction Hamiltonians are obtained. Numerical calculations of dispersive behavior of these phonon modes on a wurtzite/zinc-blende ZnO/MgO NW are performed. The frequency ranges of the IO and QC phonon modes of the ZnO/MgO NWs are analyzed and discussed. It is found that the IO modes only exist in one frequency range, while QC modes may appear in three frequency ranges. The dispersive properties of the IO and QC modes on the free wave-number kz and the azimuthal quantum number m arediscussed. The analytical Hamiltonians of electron-phonon interaction obtained here are quite useful for further investigating phonon influence on optoelectronics properties of wurtzite/zinc-blende 1D NW structures.  相似文献   

5.
张立 《中国物理》2006,15(5):1101-1109
The polar interface optical (IO) and surface optical (SO) phonon modes and the corresponding Froehlich electron phonon-interaction Hamiltonian in a freestanding multi-layer wurtzite cylindrical quantum wire (QWR) are derived and studied by employing the transfer matrix method in the dielectric continuum approximation and Loudon's uniaxial crystal model. A numerical calculation of a freestanding wurtzite GaN/AlN QWR is performed. The results reveal that for a relatively large azimuthal quantum number m or wave-number kz in the free z-direction, there exist two branches of IO phonon modes localized at the interface, and only one branch of SO mode localized at the surface in the system. The degenerating behaviours of the IO and SO phonon modes in the wurtzite QWR have also been clearly observed for a small kz or m. The limiting frequency properties of the IO and SO modes for large kz and m have been explained reasonably from the mathematical and physical viewpoints. The calculations of electron-phonon coupling functions show that the high-frequency IO phonon branch and SO mode play a more important role in the electron phonon interaction.  相似文献   

6.
With the aid of the macroscopic dielectric continuum and Loudon’s uniaxial crystal models, the propagating (PR) and half-space (HS) optical phonon modes and corresponding Fröhlich-like electron-phonon interaction Hamiltonians in a quasi-one-dimensionality (Q1D) wurtzite quantum well wire (QWW) structure are derived and studied. Numerical calculations on a wurtzite GaN/Al0.15Ga0.85N QWW are performed, and discussion is focused mainly on the dependence of the frequency dispersions of PR and HS modes on the free wave-number k z in the z-direction and on the azimuthal quantum number m. The calculated results show that, for given k z and m, there usually exist infinite branches of PR and HS modes in the high-frequency range, and only finite branches of HS modes in the low-frequency range in wurtzite QWW systems. The reducing behaviors of the PR modes to HS modes, and of the HS mode to interface phonon mode have been observed clearly in Q1D wurtzite heterostructures. Moreover, the dispersive properties of the PR and HS modes in Q1D QWWs have been compared with those in Q2D quantum well structures. The underlying physical reasons for these features have also been analyzed in depth.  相似文献   

7.
ZHANG Li 《理论物理通讯》2006,46(6):1109-1112
By employing the dielectric continuum model and Loudon's uniaxial crystal model, the interface optical (IO) phonon modes in a freestanding quasi-one-dimensional (Q1D) wurtzite rectangular quantum wire are derived and analyzed. Numerical calculation on a freestanding wurtzite GaN quantum wire is performed. The results reveal that the dispersion frequencies of IO modes sensitively depend on the geometric structures of the Q1D wurtzite rectangular quantum wires, the free wave-number kz in z-direction and the dielectric constant of the nonpolar matrix. The degenerating behavior of the IO modes in Q1D wurtzite rectangular quantum wire has been clearly observed in the case of small wave-number kz and large ratio of length to width of the rectangular crossing profile. The limited frequency behaviors of IO modes have been analyzed deeply, and detailed comparisons with those in wurtzite planar quantum wells and cylindrical quantum wires are also done. The present theories can be looked on as a generalization of that in isotropic rectangular quantum wires, and it can naturally reduce to the case of Q1D isotropic quantum wires once the anisotropy of the wurtzite material is ignored.  相似文献   

8.
Based on the macroscopic dielectric continuum model and Loudon’s uniaxial crystal model, the polar optical phonon modes of a quasi-0-dimensional (Q0D) wurtzite spherical nanocrystal embedded in zinc-blende dielectric matrix are derived and studied. It is found that there are two types of polar phonon modes, i.e. interface optical (IO) phonon modes and the quasi-confined (QC) phonon modes coexisting in Q0D wurtzite ZnO nanocrystal embedded in zinc-blende MgO matrix. Via solving Laplace equations under spheroidal and spherical coordinates, the unified and analytical phonon states and dispersive equations of IO and QC modes are derived. Numerical calculations on a wurtzite/zinc-blende ZnO/MgO nanocrystal are performed. The frequency ranges of the IO and QC phonon modes of the ZnO/MgO nanocrystals are analyzed and discussed. It is found that the IO modes only exist in one frequency range, while QC modes may appear in three frequency ranges. The dispersive frequencies of IO and QC modes are the discrete functions of orbital quantum numbers l and azimuthal quantum numbers m. Moreover, a pair of given l and m corresponds to one IO mode, but to more than one branches of QC. The analytical phonon states and dispersive equations obtained here are quite useful for further investigating Raman spectra of phonons and other relative properties of wurtzite/zinc-blende Q0D nanocrystal structures.  相似文献   

9.
10.
Under the dielectric continuum model and Loudon's uniaxial crystal model, the polar optical phonon modes in a wurtzite multi-shell cylindrical heterostructure are analyzed and discussed. The analytical electrostatic potential functions are presented for all the five types of polar optical phonon modes including the interface optical (IO) modes, the propagating (PR) modes, the quasi-confined (QC) modes, the half-space-like (HSL) modes and the exactly confined (EC) modes. By adopting a transfer matrix method, the free IO and PR phonon fields and corresponding Fröhlich electron -IO and -PR interaction Hamiltonians are obtained via the method of electrostatic potential expansion. The analytical formulas are universal and can be applied to single, double and some complex cylindrical wurtzite quantum systems.  相似文献   

11.
We have experimentally and theoretically studied IR-active optical phonons, which are spatially confined in the volume of semiconducting CdS nanocrystals of various shapes synthesized in a dielectric matrix (porous aluminum oxide). Within an approach admitting the mixing of all expected types of vibrations, the complete sets of phonon modes are determined for a spherical quantum dot (QD) and a cylindrical quantum wire (QW) in this matrix. Based on these results, the polarizability spectra of QDs and QWs, as well as the effective dielectric function of a composite material containing such nanoparticles, are calculated for the far-IR wavelength range. It is established that the spectrum of the dielectric function exhibits specific features in the region between the transverse and longitudinal optical phonon frequencies of the massive semiconductor material. These features explain the rather unusual structure of the IR spectra of the composite samples studied.  相似文献   

12.
Under the dielectric continuum model and separation of variables, the interface optical (IO) phonon modes and electron-optical-phonon interaction in rectangular quantum wire and quantum dot embedded in a nonpolar matrix are studied. We found that there exist various types of IO phonon modes in rectangular nanostructures. The IO phonon modes in rectangular quantum wire include IO-propagating (IO-PR) and IO-IO hybrid phonon modes, while the IO phonon modes in rectangular quantum dot contain IO-IO-PR and IO-PR-PR hybrid phonon modes. The results of numerical calculation show that these hybrid phonon modes contain corner optical (CO) phonon modes and edge optical (EO) phonon modes. The potential applications of these results are also discussed.  相似文献   

13.
The ground-state polaron self-trapped energy and effective mass due to the surface optical (SO) phonon modes in a freestanding wurtzite GaN nanowire (NW) were studied by means of the Lee–Low–Pines variational approach. Based on the dielectric continuum and Loudon’s uniaxial crystal models, the polar optical phonon modes in the one-dimensional (1D) systems are analyzed, and the vibrating spectra of SO modes and electron–SO phonon coupling functions are discussed and analyzed. The calculations on the ground-state polaron self-trapped energy and correction of effective mass due to the SO phonon modes in the 1D GaN NWs reveal that the polaron self-trapped energy and correction of effective mass are far larger than those in 1D GaAs NW systems. The reasons resulting in this obvious difference in the two 1D structures are mainly due to the different electron–phonon coupling constants and electron effective masses of bulk materials constituting the two types of 1D confined system. Finally, the polaronic properties of the wurtzite 1D GaN NWs have been compared with those of the wurtzite GaN-based two-dimensional quantum wells. The physical origination of these characteristics and their distinction in the different-dimensionality systems has been analyzed in depth.  相似文献   

14.
An improved valence force field model (VFFM) is suggested to calculate the phonon modes in both bulk specimens and quantum dots (QDs) of AlAs taking account of the effect of transverse effective charges (TOs) correctly.The resultant dispersions of AlAs bulk phonons are in accord better with the results carefully fitted to the experimental data by using 11-parameters rigid-ion model, than those got by ordinary VFFM, especially in the region of near Г point. For AlAs QDs, TCs are evaluated bond by bond for each phonon mode of QD and its effect on the change of the force on atoms is taken into account to modify further the phonon spectrum. The frequency spectra and densities ofphonon states of d/fferent irreducible representations calculated by using improved VFFM are compared with the results of ordinary VFFM. The correct evaluation of the TOs is not only important in calculating the phonon spectrum of both bulk and QD specimens accurately, but is also in the further discussion of the electron-phonon (e-ph) interaction, which can be directly related to TCs of ions in QD.  相似文献   

15.
The interface-optical-propagating (IO-PR) mixing phonon modes of a quasi-zero-dimensional (QOD) wurtzite cylindrical quantum dot (QD) structure are derived and studied by employing the macroscopic dielectric continuum model. The analytical phonon states of IO-PR mixing modes are given. It is found that there are two types of IO-PR mixing phonon modes, i.e. p-IO//z-PR mixing modes and the z-IO//p-PR mixing modes existing in QOD wurtzite QDs. And each IO-PR mixing modes also have symmetrical and antisymmetrieal forms. Via a standard procedure of field quantization, the Frohlich Hamiltonians of electron-(IO-PR) mixing phonons interaction are obtained. Numerical calculations on a wurtzite GaN cylindrical QD are performed. The results reveal that both the radial-direction size and the axial-direction size as well as the dielectric matrix have great influence on the dispersive frequencies of the IO-PR mixing phonon modes. The limiting features of dispersive curves of these phonon modes are discussed in depth. The phonon modes "reducing" behavior of wurtzite quantum confined systems has been observed obviously in the structures. Moreover, the degenerating behaviors of the IO-PR mixing phonon modes in wurtzite QOD QDs to the IO modes and PR modes in wurtzite Q2D QW and QID QWR systems are analyzed deeply from both of the viewpoints of physics and mathematics.  相似文献   

16.
A diagrammatic technique developed for Green’s functions with inclusion of multiphonon processes is used to investigate the electronic energy levels and the phonon replicas corresponding to them in a semiconductor quantum dot (QD) embedded in a dielectric matrix. It is shown, with reference to GaAs, CdSe, and CuCl quantum dots embedded in glass, that in the case of QD potential wells of a finite depth the shifts of the electronic energy levels decrease with decreasing QD size, irrespective of the strength of electron-phonon coupling in the nanoheterostructure. Theoretically calculated positions of the phonon replicas for CdSe in glass agree with the experimental data on Raman scattering.  相似文献   

17.
An improved valence force field model (VFFM) is suggested to calculate the phonon modes in both bulk specimens and quantum dots (QDs) of AlAs taking account of the effect of transverse effective charges (TCs) correctly.The resultant dispersions of AlAs bulk phonons are in accord better with the results carefully fitted to the experimental data by using 11-parameters rigid-ion model, than those got by ordinary VFFM, especially in the region of near F point. For AlAs QDs, TCs are evaluated bond by bond for each phonon mode of QD and its effect on the change of the force on atoms is taken into account to modify further the phonon spectrum. The frequency spectra and densities of phonon states of different irreducible representations calculated by using improved VFFM are compared with the results of ordinary VFFM. The correct evaluation of the TCs is not only important in calculating the phonon spectrum of both bulk and QD specimens accurately, but is also in the further discussion of the electron-phonon (e-ph) interaction, which can be directly related to TCs of ions in QD.  相似文献   

18.
We have presented a theoretical calculation of the differential cross section (DCS) for the electron Raman scattering (ERS) process associated with the bulk-like longitudinal optical (LO) and interface optical (IO) phonon modes in semiconductor quantum dots (QDs). Electron states are considered to be confined within the QDs. We consider the Fröhlich electron-phonon interaction in the framework of the dielectric continuum approach. We study selection rules for the processes. Some singularities in the Raman spectra are found and interpreted. A discussion of the phonon behavior for QDs with large and small size is presented. The numerical results are also compared with that of experiments.  相似文献   

19.
20.
赵凤岐  周炳卿 《物理学报》2007,56(8):4856-4863
The energy levels of a polaron in a wurtzite nitride finite parabolic quantum well (PQW)are studied by a modified Lee-Low-Pines variational method. The ground state of the polaron, the transition energy from first exited state to the ground state and the 关键词: 氮化物抛物量子阱 电子-声子相互作用 极化子  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号