首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We analyze how a short distance boundary condition for the Schrödinger equation must change as a function of the boundary radius by imposing the physical requirement of phase shift independence on the boundary condition. The resulting equation can be interpreted as a variable phase equation of a complementary boundary value problem. We discuss the corresponding infrared fixed points and the perturbative expansion around them generating a short distance modified effective range theory. We also discuss ultraviolet fixed points, limit cycles, and attractors with a given fractality which take place for singular attractive potentials at the origin. The scaling behavior of scattering observables can analytically be determined and is studied with some emphasis on the low energy nucleon-nucleon interaction via singular pion exchange potentials. The generalization to coupled channels is also studied.  相似文献   

2.
The study of the three-body problem with short-range attractive two-body forces has a rich history going back to the 1930s. Recent applications of effective field theory methods to atomic and nuclear physics have produced a much improved understanding of this problem, and we elucidate some of the issues using renormalization group ideas applied to precise nonperturbative calculations. These calculations provide 11-12 digits of precision for the binding energies in the infinite cutoff limit. The method starts with this limit as an approximation to an effective theory and allows cutoff dependence to be systematically computed as an expansion in powers of inverse cutoffs and logarithms of the cutoff. Renormalization of three-body bound states requires a short range three-body interaction, with a coupling that is governed by a precisely mapped limit cycle of the renormalization group. Additional three-body irrelevant interactions must be determined to control subleading dependence on the cutoff and this control is essential for an effective field theory since the continuum limit is not likely to match physical systems (e.g., few-nucleon bound and scattering states at low energy). Leading order calculations precise to 11-12 digits allow clear identification of subleading corrections, but these corrections have not been computed.  相似文献   

3.
We discuss inclusive scattering of electrons from composite systems. In particular, we consider the examples of quasi-elastic electron-nucleus scattering and deep-inelastic electron-nucleon scattering, DIS, processes that have much in common. The study of DIS in a way analogous to past studies of quasi-elastic scattering provides new insight, in particular in what concerns the role of final-state interaction and the importance of binding of the constituents.  相似文献   

4.
We consider the massless tricritical Ising model perturbed by the thermal operator 1,3 in a cylindrical geometry and apply integrable boundary conditions, labelled by the Kac labels (r,s), that are natural off-critical perturbations of known conformal boundary conditions. We derive massless thermodynamic Bethe ansatz (TBA) equations for all excitations by solving, in the continuum scaling limit, the TBA functional equation satisfied by the double-row transfer matrices of the A4 lattice model of Andrews, Baxter and Forrester (ABF) in Regime IV. The resulting TBA equations describe the massless renormalization group flow from the tricritical to critical Ising model. As in the massive case of Part I, the excitations are completely classified in terms of (m,n) systems but the string content changes by one of three mechanisms along the flow. Using generalized q-Vandermonde identities, we show that this leads to a flow from tricritical to critical Ising characters. The excited TBA equations are solved numerically to follow the continuous flows from the UV to the IR conformal fixed points.  相似文献   

5.
We calculate deuteron positive and negative radial moments involving any bilinear function of the deuteron S and D wave functions for renormalized OPE and TPE chiral potentials. The role played by the strong singularities of the potentials at the origin and the short-distance insensitivity of the results when the potentials are fully iterated is emphasized as compared to realistic potentials.  相似文献   

6.
We show that the hydrogen atom possesses Yangian symmetry and integrability in terms of the RTT relation. A possible experimental test of the physical effect of Yangian is proposed.  相似文献   

7.
8.
We provide an overall picture of the magnetic critical behavior of the Ising and three-state Potts models on fractal structures. The results brought out from Monte Carlo simulations for several Hausdorff dimensions between 1 and 3 show that this behavior can be understood in the framework of weak universality. Moreover, the maxima of the susceptibility follow power laws in a very reliable way, which allows us to calculate the ratio of the exponents γ/ν and the anomalous dimension exponent η in a reliable way. At last, the evolution of these exponents with the Hausdorff dimension is discussed.  相似文献   

9.
A new kind of the relativistic three-body equations for the coupled πN and γN scattering reactions with the ππN and γπN three particle final states are suggested. These equations are derived in the framework of the standard field-theoretical S-matrix approach in the time-ordered three-dimensional form. Therefore, corresponding relativistic covariant equations are three-dimensional from the beginning and the considered formulation is free of the ambiguities which appear due to a three dimensional reduction of the four dimensional Bethe-Salpeter equations. The solutions of the considered equations satisfy the unitarity condition and they are exactly gauge invariant even after the truncation of the multiparticle (n>3) intermediate states. Moreover, the form of these three-body equations does not depend on the choice of the model Lagrangian and it is the same for the formulations with and without quark degrees of freedom. The effective potential of the suggested equations is defined by the vertex functions with two on-mass shell particles. It is emphasized that these INPUT vertex functions can be constructed from experimental data. Special attention is given to the construction of the intermediate on shell and off shell Δ resonance states. These intermediate Δ states are obtained after separation of the Δ resonance pole contributions in the intermediate πN Green function. The resulting amplitudes for the Δ; Δ; ΔΔγ transition have the same structure as the vertex functions for transitions between the on-mass shell particle states with spin 1/2 and 3/2. Therefore it is possible to introduce the real value for the magnetic momenta for the ΔΔγ transition amplitudes in the same way as it is done for the N vertex function.  相似文献   

10.
The cubic scalar field theory admits the bell-shaped solitary wave solutions which can be interpreted as a massive Bose particles. We rule out the nonminimal p-brane action for such a solution as the point particle with curvature. When quantizing it as the theory with higher derivatives, it is shown that the corresponding quantum equation has SU(2) dynamical symmetry group realizing the exact spin-coordinate correspondence. Finally, we calculate the quantum corrections to the mass of the bell boson which can not be obtained by means of the perturbation theory starting from the vacuum sector.  相似文献   

11.
We present a two-body relativistic wave equation for a system composed of a boson and a fermion. One-body equations such as the Dirac and the Klein-Gordon equations are often used as an approximate equation for relativistic two-body systems. However, when the masses of two particles are not very different, the use of one-body equations comes into question. We use the Feshbach-Villars formalism for the boson so that the wave equation can be given in the form of an eigenvalue equation for the Hamiltonian. Differences between our equation and the one-body equations are examined and illustrated in a numerical example of a two-body system with scalar and vector potentials.Communicated by: W. Weise  相似文献   

12.
The direct string computation of anomalous D-brane and orientifold plane couplings is extended to include the curvature of the normal bundle. The normalization of these terms is fixed unambiguously. New, non-anomalous gravitational couplings are found.  相似文献   

13.
A unified S-matrix framework of quantum singular interactions is presented for the comparison of self-adjoint extensions and physical renormalization. For the long-range conformal interaction the two methods are not equivalent, with renormalization acting as selector of a preferred extension and regulator of the unbounded Hamiltonian.  相似文献   

14.
We derive a closed expression for the SU(2) Born–Infeld action with the symmetrized trace for static spherically symmetric purely magnetic configurations. The lagrangian is obtained in terms of elementary functions. Using it, we investigate glueball solutions to the flat space NBI theory and their self-gravitating counterparts. Such solutions, found previously in the NBI model with the “square root–ordinary trace” lagrangian, are shown to persist in the theory with the symmetrized trace lagrangian as well. Although the symmetrized trace NBI equations differ substantially from those of the theory with the ordinary trace, a qualitative picture of glueballs remains essentially the same. Gravity further reduces the difference between solutions in these two models, and, for sufficiently large values of the effective gravitational coupling, solutions tends to the same limiting form. The black holes in the NBI theory with the symmetrized trace are also discussed.  相似文献   

15.
In this Letter, we have calculated the concurrence of the pairwise thermal entanglement for the four-qubit and five-qubit Heisenberg XX chain. It is found that there is a great difference between the even-qubit and the odd-qubit chain in the aspect of the critical temperature and of the existence of the entanglement for the case of the qubit number n no more than 5.  相似文献   

16.
The recently developed formalism for the evaluation of nuclear form factors in neutrinoless double beta decay is applied to 48Ca, 76Ge, 82Se, 100Mo, 128Te and 130Te nuclei. Explicit analytical expressions that follows from this theoretical development, in the single-mode model for the decay of 48Ca, have been worked out. They are useful both for testing the full numerical calculations, and for analytically checking the consistency with other formalisms. Large configuration space calculations are compared with previous studies, where alternative formulations were used. Yet, besides using the G-matrix as residual interaction, we here use a simple δ-force. Attention is paid to the connected effects of the short range nuclear correlations and the finite nucleon size. Constraints on lepton number violating terms in the weak Hamiltonian (effective neutrino Majorana mass and effective right-handed current coupling strengths) are deduced.  相似文献   

17.
Cosmological and astrophysical effects of heavy (10–200 MeV) sterile Dirac neutrinos, mixed with the active ones, are considered. The bounds on mass and mixing angle from both supernovae and big-bang nucleosynthesis are presented.  相似文献   

18.
We reconsider the problem of calculating a general spectral correlation function containing an arbitrary number of products and ratios of characteristic polynomials for a N×N random matrix taken from the Gaussian Unitary Ensemble (GUE). Deviating from the standard “supersymmetry” approach, we integrate out Grassmann variables at the early stage and circumvent the use of the Hubbard–Stratonovich transformation in the “bosonic” sector. The method, suggested recently by J.V. Fyodorov [Nucl. Phys. B 621 [PM] (2002) 643], is shown to be capable of calculation when reinforced with a generalisation of the Itzykson–Zuber integral to a non-compact integration manifold. We arrive to such a generalisation by discussing the Duistermaat–Heckman localisation principle for integrals over non-compact homogeneous Kähler manifolds. In the limit of large-N the asymptotic expression for the correlation function reproduces the result outlined earlier by A.V. Andreev and B.D. Simons [Phys. Rev. Lett. 75 (1995) 2304].  相似文献   

19.
The Friedberg–Lee (FL) symmetry is generated by a transformation of a fermionic field q to q+ξz. This symmetry puts very restrictive constraints on allowed terms in a Lagrangian. Applying this symmetry to N fermionic fields, we find that the number of independent fields is reduced to N−1 if the fields have gauge interaction or the transformation is a local one. Using this property, we find that a seesaw model originally with three generations of left- and right-handed neutrinos, with the left-handed neutrinos unaffected but the right-handed neutrinos transformed under the local FL translation, is reduced to an effective theory of minimal seesaw which has only two right-handed neutrinos. The symmetry predicts that one of the light neutrino masses must be zero.  相似文献   

20.
The asymptotic behaviour of the electromagnetic form factors of the electron and quark is obtained in the double-logarithmic approximation for Sudakov kinematics, i.e., for the case that the value of the momentum transfer is much greater than the mass of the particle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号