首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Z. Dong  J. Yu 《Optics Communications》2009,282(13):2484-4705
Simultaneous wavelength conversion based on four-wave mixing (FWM) for 10-Gb/s NRZ payload and 2.5-Gb/s OFDM label signals in optical switching network is experimentally demonstrated. The dual-pump scheme based on FWM in semiconductor optical amplifier (SOA) is employed and simultaneous wavelength conversion for optical packet with one optical payload of 10-Gb/s non-return-to-zero (NRZ) on-off keying (OOK) signals and one optical label of 2.5-Gb/s OFDM signals are realized. The bit-error-rate performance is evaluated for both payload and label after wavelength conversion.  相似文献   

2.
A novel method for distortion-free optical pulse transmission is theoretically proposed and simulated, in which two time lenses formed by dispersion fibers and quadratic phase modulations are utilized. One is used as an optical inverse Fourier transformation (OIFT) device to transform the initial time-domain data to frequency-domain one at the transmitter and the other as an optical Fourier transformation (OFT) device to recover the data at the receiver. By using the unchanged spectral envelope in linear optical fiber communication, the initial data can be recovered. Through simulations, a 10× 100 Gb/s intensity-modulated direct-detection (IM-DD) dense wavelength division multiplexing (DWDM) system over 20000 km transmission without the compensation for polarization mode dispersion (PMD) and dispersion slope is achieved, which can be used to upgrade the current 100Gb/s IM-DD system to a 100-Gb/s one directly.  相似文献   

3.
A 16×10-Gb/s optical time-division-multiplexing (OTDM) system was demonstrated experimentally with a well-designed ultrashort pulse source based on an electro-absorption modulator (EAM) and nonlinear fiber compressor. The obtained 10-GHz stable and pedestal-free pulse train has 2-ps width, high extinction ratio, and low timing jitter. An ultrafast demultiplexer based on a nonlinear optical loop mirror (NOLM) including a commercially available highly nonlinear fiber (HNLF) is employed to demultiplex data signal from 160 to 10 Gb/s. A back-to-back error-free demultiplexing experiment is carried out to verify the system performance.  相似文献   

4.
A 40-Gb/s optical time division multiplexing (OTDM) return-to-zero (RZ) transmission experiments in cluding a dynamic polarization mode dispersion (PMD) compensation was reported. The dynamic PMD compensator is made up of two-stage four degrees of freedom (DOF). The first stage adopts polarization controller and fixed time-delayed line. The second stage is variable differential group delay (DGD) element. The PMD monitoring technique is based on degree of polarization (DOP) as error signal. A novel practical adaptive optimization algorithm was introduced in dynamic adaptive PMD compensation. The experimental results show that the performance of the PMD compensator is excellent for 40-Gb/s RZ transmission systems with the large DGD. With this compensator, a significant improvement of system performance can be achieved in the eye pattern of a received signal. The first-order compensating ability of the compensator is greater than 30 ps. The second-order compensating ability is greater than 200 ps2.The first-order optimum compensating time is within 10 ms. The second-order optimum compensating time is within 24 ms.  相似文献   

5.
Using differential detection,we perform polarization-multiplexing 160-Gb/s optical non-return-to-zero(NRZ) differential quadrature phase shift keying(DQPSK) signal transmission over 100-km standard single mode fiber at a bit error rate(BER) of less than 10-9.The enabling technology includes clock recovery,fine dispersion compensation,and polarization tracking for de-multiplexing.Furthermore,a hybrid clock recovery scheme is proposed.The scheme is realized with ordinary devices using an optoelectrical modula...  相似文献   

6.
A quasi-cyclic low-density parity check (QC-LDPC) code is constructed by an improved stability of the shortest cycle algorithm for 160-Gb/s non-return zero differential quadrature phase shift keying (NRZ- DQPSK) optical transmission system with the fiber-based optical parametric amplifier (FOPA). The QC- --14 d LDPC code with stability of the shortest cycle reduces the bit error ratio (BER) to 10 an restrains the error floor effectively.  相似文献   

7.
A 40-Gb/s optical time division multiplexing (OTDM) return-to-zero (RZ) transmission experiments including a dynamic polarization mode dispersion (PMD) compensation was reported. The dynamic PMD compensator is made up of two-stage four degrees of freedom (DOF). The first stage adopts polarization controller and fixed time-delayed line. The second stage is variable differential group delay (DGD) element. The PMD monitoring technique is based on degree of polarization (DOP) as error signal. A novel practical adaptive optimization algorithm was introduced in dynamic adaptive PMD compensation. The experimental results show that the performance of the PMD compensator is excellent for 40-Gb/s RZ transmission systems with the large DGD. With this compensator, a significant improvement of system performance can be achieved in the eye pattern of a received signal. The first-order compensating ability of the compensator is greater than 30 ps. The second-order compensating ability is greater than 200 ps2. The first  相似文献   

8.
In this paper we report the first demonstration of all-optical time demultiplexing at 250 Gb / s with self-clocking using polarization multiplexing of the clock and data. To achieve such high speed, an ultra high-speed device known as the Teruhertz Optical Asymmetric Demultiplexer (TOAD) is used. We also demonstrate self-clocked address recognition and routing control of a photonic switch at 250 Gb / s. The bit-error rate at the switch output was measured to be less than 10 -9.  相似文献   

9.
We study an electronic compensator (EC) as a receiver for a 100-Gb/s polarization division multiplexing coherent optical orthogonal frequency division multiplexing (PDM-CO-OFDM) system without optical dispersion compensation.EC,including electrical dispersion compensation (EDC),least squares channel estimation and compensation (LSCEC),and phase compensation (PC),is used to compensate for chromatic dispersion (CD),phase noise,polarization mode dispersion (PMD),and channel impairments,respectively.Simulations show that EC is highly effective in compensating for those impairments and that the performance is close to the theoretical limitation of optical signal-to-noise rate (OSNR),CD,and PMD.Its robustness against those transmission impairments and fiber nonlinearity are also systematically studied.  相似文献   

10.
An 8×10 Gb/s optical time-division-multiplexing (OTDM) system was demonstrated with an electroabsorption modulator (EAM) based short pulse generator followed by a two-stage nonlinear compression scheme which generated stable 10-GHz, 2-ps full-width at half-maximum (FWHM) pulse train, an optoelectronic oscillator (OEO) that extracted 10-GHz clock with a timing jitter of 300 fs from 80-Gb/s OTDM signal and a self cascaded EAM which produced a switching window of about 10 ps. A back-to-back error free demultiplexing experiment with a power penalty of 3.25 dB was carried out to verify the system performance.  相似文献   

11.
We experimentally demonstrate a fast random bit generator (RBG) based on bandwidth-enhanced chaotic laser from an optical feedback laser diode with optical injection.The bandwidth-enhanced chaotic signal is sampled and converted to a binary sequence in real time without the need of programming for off-line processing.Multi-rate bit sequences,with the fastest rate of up to 2.87 Gb/s,are obtained with verified randomness.  相似文献   

12.
Adaptive PMD compensation in 10-Gb/s RZ optical communication system   总被引:6,自引:0,他引:6  
We report an experiment of adaptive compensation for first-order polarization mode dispersion (PMD) in 10-Gb/s return zero (RZ) optical communication system. The compensated differential group delay (DGD) is up to 30 ps. The quasi-real-time, less than one second, PMD compensation is realized. In the experiment, for the first time, the algorithm so-called particle swarm optimization (PSO) is used to control feedback compensation system.  相似文献   

13.
We demonstrate a novel 40-Gb/s transmission system over a 10×101-km standard single mode fiber (SSMF) loop. This system features polarization multiplexed quadrature phase shift keying (PolMux-QPSK), lowvoltage modulation of 2-V peak-to-peak signal amplitude, and home-made 90° optical hybrid with singleended digital coherent detection. Any power amplifers before the modulator and balanced detectors are not used. In the case of low-voltage modulation, coherent detection is much less sensitive to modulator bias offset than delay interferometer-based demodulation.  相似文献   

14.
A strained InGaAsP-InP multiple-quantum-well DFB laser monolithically integrated with electroabsorption modulator by ultra-low-pressure (22 mbar) selective-area-growth is presented. The integrated chip exhibits superior characteristics, such as low threshold current of 19 mA, single-mode operation around 1550 nm range with side-mode suppression ratio over 40 dB, and larger than 16 dB extinction ratio when coupled into a single-mode fiber. More than 10 GHz modulation bandwidth is also achieved. After packaged in a compact module, the device successfully performs 10-Gb/s NRZ transmission experiments through 53.3 km of standard fiber with 8.7 dB dynamic extinction ratio. A receiver sensitivity of −18.9 dBm at bit-error-rate of 10−10 is confirmed.  相似文献   

15.
A 16 × 10-Gb/s optical time-division-multiplexing (OTDM) 100-km transmission system with home-made multiplexer is demonstrated experimentally. A demultiplexer based on two cascaded electro-absorption modulator (EAM) and a clock recovery unit form a feedback loop. Error-free demultiplexing from 160-Gb/s to 10-Gb/s after over 100-km transmission is achieved. The power penalty is about 3.5 dB with the bit error rate of 10−9.  相似文献   

16.
An adaptive polarization mode dispersion (PMD) compensation experiment is reported in a 40-Gb/s phase shaped binary transmission (PSBT) communication system, with the use of a new digital signal processor (DSP)-based optical PMD compensator. PMD tolerance is found to be enhanced by 8 ps after PMD compensation with 1-dB optical signal-to-noise ratio (OSNR) penalty. Under the condition of fast change of states of polarization up to 85 rad/s in the fiber link, the performance of our PMD compensator undergoes the bit error ratio (BER) test for as long as 10 h.  相似文献   

17.
An experiment of two-stage adaptive compensation for polarization mode dispersion (PMD) in a 40-Gb/s optical time-division multiplexed communication system is reported. The PMD monitoring technique based on degree of polarization was adopted. The particle swarm optimization (PSO) algorithm was introduced in adaptive PMD compensation. The comparison was made to estimate the effectiveness between PSO algorithms with global neighborhood structure (GPSO) and with local neighborhood structure (LPSO).The LPSO algorithm is shown to be more effective to search global optimum for PMD compensation than GPSO algorithm. The two-stage PMD compensator is shown to be effective for both first- and second order PMD, and the compensator is shown to be bit rate independent. The optimum searching time is within one hundred milliseconds.  相似文献   

18.
We report the adaptive compensation experiment of polarization mode dispersion (PMD) for 10-Gb/s non return-to-zero (NRZ) and return-to-zero (RZ) optical communication systems using a two-stage PMD compensator and the monitoring technique based on degree of polarization (DOP) feedback-signals. The DOP monitor has its advantages of bit-rate independent and modulation format independent. The two-stage compensator has the capacity of compensation for the first- and second-order PMD. The compensated differential group delay (DGD) is up to 80 ps, and compensated principal state of polarization rotation rate is 20 ps. The time used for compensation is less than 1 second.  相似文献   

19.
An experiment of two-stage adaptive compensation for polarization mode dispersion (PMD) iu a 40-Gb/s optical time-division multiplexed communication system is reported. The PMD monitoring technique based on degree of polarization was adopted. The particle swarm optimization (PSO) algorithm was introduced in adaptive PMD compensation. The comparison was made to estimate the effectiveness between PSO algorithms with global neighborhood structure (GPSO) and with local neighborhood structure (LPSO). The LPSO algorithm is shown to be more effective to search global optimum for PMD compensation than GPSO algorithm. The two-stage PMD compensator is shown to be effective for both first- and second-order PMD, and he compensator is shown to be bit rate independent. The optimum searching time is within one huudred milliseconds.  相似文献   

20.
The use of Bell Laboratories layered space-time (BLAST) architecture as a digital signal processing algorithm is proposed in this letter.It is aimed at improving the nonlinearity tolerance of a polarization division multiplexing (PDM) coherent optical orthogonal frequency division multiplexing (CO-OFDM) system.The application of this channel estimation algorithm simulates system performance under different dispersion compensation (DC) maps.Simulation results show that,compared with intra-symbol frequency-domain averaging (ISFA) algorithm,at least 5-dB Q-factor improvement is achieved for the PDM CO-OFDM system at 112-Gb/s data rate over an 800-km standard single-mode fiber (SSMF) without DC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号