首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
该文采用预浓缩/气相色谱-质谱联用仪(配FID检测器)结合Dean Switch中心切割和冷柱箱技术,建立了一针进样同时测定污染源废气中118种挥发性有机物(VOCs)的分析方法。废气样品采用苏玛罐收集,稀释后进系统分析,其中C2~C3组分在FID上测定,外标法定量;其他目标物在质谱(MS)上测定,内标法定量。结果显示,118种VOCs在0.5~30 nmol/mol浓度范围内线性良好,相关系数(r2)为0.995 3~0.999 9,方法检出限为0.01~0.38 μg·m-3,定量下限为0.03~1.51 μg·m-3;在低、中、高3个加标水平下的回收率为76.4%~110%,相对标准偏差(RSD,n=7)为0.30%~6.0%。将其应用于移动污染源(叉车)及固定污染源(制鞋厂、家具厂、印刷厂、塑料厂、造船厂)废气样品中VOCs的测定,均有不同程度的检出,其中叉车尾气中总VOCs(TVOC)含量为33.50~35.25 mg·m-3,固定污染源废气中TVOC为44.54~211.71 mg·m-3。该方法简便快速、稳定灵敏、准确度高,适用于移动污染源和固定污染源废气中VOCs的定性定量分析。  相似文献   

2.
采用热脱附结合吹扫捕集(P&T)技术对大气中挥发性有机物(VOCs)进行富集,并用气相色谱质谱(GC/MS)进行分析检测,建立了一种大气中多组分VOCs分析方法。将热脱附-吹扫捕集-气相色谱质谱联用技术应用于大气挥发性有机物分析中,使样品经过吸附管及捕集阱双重富集后再进入GC/MS检测,VOCs分析结果部分目标物检出限可达到0.1 ng/L,实际平行样品检测结果相对偏差小于30%,且可同时对54种VOCs进行定性定量分析。  相似文献   

3.
本文建立了苏码罐采样-冷聚焦-气相色谱中心切割-氢火焰离子化/质谱双检测器测定环境空气中挥发性有机物(VOCs)的方法,通过选择色谱柱和中心切割时间实现104种VOCs的良好分离,通过优化冷阱温度消除了实际样品中CO_2对目标化合物的干扰。实验结果表明,该方法目标化合物标准曲线平均响应因子均在15%以内,检出限在0.07~0.72μg/m~3范围,精密度(RSD)均在10%以内,能较好地应用于环境空气中104种VOCs的定性定量分析。  相似文献   

4.
王艳洁  那广水  王震  姚子伟 《色谱》2012,30(8):847-850
通过考察提取溶剂、毛细管柱、净化条件及共溶出干扰物等因素对十氯酮测定的影响,建立了二氯甲烷液-液富集萃取、硫酸净化分离、气相色谱法(GC)-电子捕获检测器(ECD)测定海水介质中有机氯农药类持久性有机污染物十氯酮残留分析方法。1 L海水经50 mL二氯甲烷萃取富集,浓缩后采用硫酸净化,以1%(体积分数)甲醇/正己烷混合溶液转移定容后,采用DB-5非极性毛细管柱进行GC分离,电子捕获检测器可测定其中十氯酮的含量;该方法采用外标法定量,在5~100 μg/L范围内呈线性,线性相关系数为0.9989。低、中、高3个浓度水平的平均加标回收率为81%~108%,相对标准偏差为1.2%~5.1%(n=6)。方法的检出限为0.6 ng/L。结果表明,该方法灵敏度高,线性关系好,可以满足简便、快速、准确测定海水中十氯酮的要求。  相似文献   

5.
本文报导了用硅胶吸附型填料(Partisil-PXS)以正己烷/异丙醇(98/2)为流动相,用带有紫外检测器的高效液相色谱(HPLC)分离11种氮杂芳烃的方法。应用此法测定了焦炉大气颗粒物中存在的4种氮杂芳烃,在60~300ng范围内浓度与检测器响应值成线性关系。定量重现性好,对标准样品的变异系数在±5%以内,对环境样品的变异系数为±10%。使用紫外检测器对氮杂芳烃检测限为1×10~(-9)克。荧光检测器对氮杂芳烃的检测限为1×10~(-9)~1×10~(-10)克。  相似文献   

6.
便携式GC-MS在挥发性有机物应急监测中的应用   总被引:7,自引:0,他引:7  
建立了便携式GC-MS测定空气中37种挥发性有机物(VOCs)的方法,采用便携式GC-MS配置的手持探头采集大气样品,然后用便携式GC-MS进行检测.该方法能快速、有效地对空气中的37种挥发性有机物进行定性和定量,具有相关性好(r>0.995)、检出限低(0.070×10-9 ~0.94×10-9 (体积分数))、精密度好(RSD小于7.7%)、准确度高(回收率为92% ~114%)的特点,适用于大气中挥发性有机污染物的应急监测.  相似文献   

7.
《分析试验室》2021,40(4):429-432
基于目标化合物的弱酸性及小麦粉基质的特点,通过对不同提取剂、流动相组成、梯度条件及色谱柱的选择及优化,建立了高效液相色谱-二极管阵列检测器(HPLC-PDA)测定小麦粉中苯甲羟肟酸的分析方法。样品中的苯甲羟肟酸采用甲醇提取,无需净化,以甲醇-磷酸盐(p H 3.7)为流动相,Waters Xbridge C18色谱柱完成了对目标物及特定干扰物的完全分离,高效液相色谱-二极管阵列检测器检测,外标法定量。该方法在0.1~10μg/mL范围内线性关系系数(r~2)大于0.999;方法检出限为0.1 mg/kg,定量限为0.5 mg/kg;在定量限(LOQ),2 LOQ和10 LOQ 3个添加水平下重复测定6次的回收率为93.7%~102.7%,相对标准偏差(RSD)为1.1%~3.8%。该方法适用于小麦粉中苯甲羟肟酸的测定。  相似文献   

8.
为准确测量气雾剂产品中挥发性有机化合物(VOCs)的成分及含量,设计了特定装置将气雾剂中推进剂和非推进剂进行分离,利用采集袋收集气雾剂中的推进剂,通过液液萃取法对非推进剂中的VOCs进行提取。以所建立的气相色谱-质谱/氢火焰离子化检测器(GC-MS/FID)联用方法对样品进行分析,其中推进剂气体组分含量用归一化法进行测定,非推进剂的VOCs依据检出种类,选择8种VOCs建立标准曲线。各物质在对应质量浓度范围呈良好的线性关系,相关系数(r2)均大于0.99;检出限和定量下限分别为0.25~0.50 mg/L和0.50~1.00 mg/L;回收率为90.5%~105%,相对标准偏差(RSD)为1.8%~9.3%。应用建立的方法分析6种不同功能的气雾剂产品,并计算其臭氧生成潜势。结果表明,推进剂部分主要检出丙烷、丁烷、二甲醚,非推进剂部分检出苯系物、烷烃、环烷烃、单萜类、羧酸衍生物、醚类,其中苯系物和单萜类含量较高。该方法可为企业改进产品配方提供参考,也可为监管部门提供技术支持。  相似文献   

9.
研究了富勒烯烟炱对挥发性有机物(VOCs)的吸附作用.17种VOCs气体在烟炱上的比保留体积Vg20为17.4~2634L/g.富勒烯烟炱充填的吸附管对VOCs气体的吸附-热脱附回收率在40.8%~117%之间,大部分为(100±20)%.结果表明,富勒烯烟炱能够用于吸收和富集大气中痕量的VOCs  相似文献   

10.
阀切换技术在大气样品中六氟化硫快速分析中的应用   总被引:2,自引:0,他引:2  
羊衍秋  何玉晖  田杰  姜涛 《色谱》2007,25(4):609-610
建立了双柱阀切换技术分析大气样品中的SF6含量的气相色谱-电子捕获检测器(GC-ECD)检测方法。采用规格为3.2 mm×1 m的5A分子筛(40~60目)柱为预柱,规格为3.2 mm×0.5 m的5A分子筛(60~80目)柱为分析柱。在所用实验条件下,平均峰高响应为1.08×10-14 mL/μV,SF6单位体积进样量的色谱峰高的相对标准偏差为2.2%,SF6的最低检测限为6.03×10-13 mL(3倍基线噪声)。采用该方法分析大气中SF6的含量,样品分析时间为1.2 min,于12 min内完成11个空气样品的分析,SF6含量的相对标准偏差2.1%。  相似文献   

11.
A simple modification to a commercially available gas chromatograph isotope ratio mass spectrometer (GC/IRMS) allows rapid and precise determination of the stable isotopes ((13)C and (18)O) of CO(2) at ambient CO(2) concentrations. A sample loop was inserted downstream of the GC injection port and used to introduce small volumes of air samples into the GC/IRMS. This procedure does not require a cryofocusing step and significantly reduces the analysis time. The precisions for delta(13)C and delta(18)O of CO(2) at ambient concentration were +/-0.164 and +/-0.247 per thousand, respectively. This modified GC/IRMS was used to test the effects of storage on the (18)O and (13)C isotopic ratios of CO(2) at ambient concentrations in four container types. On average, the change in the (13)C-CO(2) and (18)O-CO(2) ratios of samples after one week of storage in glass vials equipped with butyl rubber stoppers (Bellco Glass Inc.) were depleted by 0.12 and by 0.20 per thousand, respectively. The (13)C ratios in aluminum canisters (Scotty II and IV, Scott Specialty Gasses) after one month of storage were depleted, on average, by 0.73 and 2.04 per thousand, respectively, while the (18)O ratios were depleted by 0.38 and 1.20 per thousand for the Scotty II and IV, respectively. After a month of storage in electropolished containers (Summa canisters, Biospheric Research Corporation), the (13)C-CO(2) and (18)O-CO(2) ratios were depleted, on average, by 0.26 and enriched by 0.30 per thousand, respectively, close to the precision of measurements. Samples were collected at a mature hardwood forest for CO(2) concentration determination and isotopic analysis. A comparison of CO(2) concentrations determined with an infrared gas analyzer and from sample voltages, determined on the GC/IRMS concurrent with the isotopic analysis, indicated that CO(2) concentrations can be determined reliably with the GC/IRMS technique. The (13)C and (18)O ratios of nighttime ecosystem-respired CO(2), determined from the intercept of Keeling plots, were -26.11 per thousand (V-PDB) and -8.81 per thousand (V-PDB-CO(2)), respectively.  相似文献   

12.
An automated sampling and enrichment apparatus coupled with a gas chromatography/mass spectrometry (GC/MS) technique was constructed for the analysis of ambient volatile organic compounds (VOCs). A sorbent trap was built within the system to perform on-line enrichment and thermal desorption of VOCs onto GC/MS. In order to improve analytical precision, calibration accuracy, and to safe-guard the long-term stability of this system, a mechanism to allow on-line internal standard (I.S.) addition to the air sample stream was configured within the sampling and enrichment apparatus. A sub-ppm (v/v) level standard gas mixture containing 1,4-fluorobenzene, chloropentafluorobenzene, 1-bromo-4-fluorobenzene was prepared from their pure forms. A minute amount of this I.S. gas was volumetrically mixed into the sample stream at the time of on-line enrichment of the air sample to compensate for measurement uncertainties. To assess the performance of this VOC GC/MS system, a gas mixture containing numerous VOCs at sub-ppb (v/v) level served as the ambient air sample. Various internal standard methods based on total ion count (TIC) and selective ion monitoring (SIM) modes were attempted to assess the improvement in analytical precision and accuracy. Precision was improved from 7-8% RSD without I.S. to 2-3% with I.S. for the 14 target VOCs. Uncertainties in the calibration curves were also improved with the adoption of I.S. by reducing the relative standard deviation of the slope (Sm%) by an average a factor of 4, and intercept (Sb%) by a factor of 2 for the 14 target VOCs.  相似文献   

13.
The performance characteristics of a portable GC instrument requiring no compressed gas supplies and using relatively lightweight transportable components for the analysis of volatile organic components in large-volume air samples are described. To avoid the need for compressed gas tanks, ambient air is used as the carrier gas, and a vacuum pump is used to pull the carrier gas and injected samples through the wall-coated capillary column and a photoionization detector (PID). At-column heating is used eliminating the need for a conventional oven. The fused silica column is wrapped with heater wire and sensor wire so that heating is provided directly at the column. A PID is used since it requires no external gas supplies and has high sensitivity for many compounds of interest in environmental air monitoring. In order to achieve detection limits in the ppb range, an online multibed preconcentrator containing beds of graphitized carbons and carbon molecular sieves is used. After sample collection, the flow direction through the preconcentrator is reversed, and the sample is thermally desorbed directly into the column. Decomposition of sensitive compounds during desorption is greater with air as the carrier gas than with hydrogen.  相似文献   

14.
冯丽丽  胡晓芳  于晓娟  张文英 《色谱》2016,34(2):209-214
采用热脱附(TD)结合气相色谱-三重四极杆串联质谱(GC-MS/MS)建立了环境空气中23种挥发性有机物(VOCs)同时检测的分析方法。空气样品通过主动采样的方式富集到装有Tenax-TA填料的热脱附管中,热解吸后在选择反应监测(SRM)模式下用GC-MS/MS进行检测,内标法定量。结果表明,23种VOCs在0.01~1 ng和1~100 ng低、高两个范围内线性关系良好,相关系数(r2)均大于0.99,方法定量限为0.00008~1 μ g/m3。加标水平为2、10和50 ng时,23种VOCs的平均回收率为77%~124%。除了最低加标水平的氯苯,相对标准偏差(RSD, n=6)均小于20%。对市内3个采样点的环境空气进行测定,其中苯、甲苯、乙苯、二甲苯、苯乙烯、1,2,4-三甲基苯和六氯丁二烯均有检出。实验证明,该TD和GC-MS/MS相结合的检测方法具有准确、可靠、灵敏度高等优点,适用于环境空气中VOCs的同时测定。  相似文献   

15.
Abstract

Trace level Volatile Organic Compounds (VOCs) in ambient air are normally determined according to EPA Method TO-14. This method describes the analysis in ambient air of 41 VOCs, ranging in boiling point from -29 to 215°C. It covers a concentration range from 0.2 to 20 parts per billion, volume/volume (ppb), and specifies sample enrichment of a 400 mL air sample on glass beads at -160°C. While this sample volume provides sub-ppb levels of VOC detection for target analytes when using a quadrupole mass spectrometer detector in SIM mode or when using GC detectors, the identification of non-target analytes may only be done in full scan mode for higher concentrations. Also with this sample volume a Nafion dryer is needed for water removal thereby lowering the recovery of polar VOCs.

Because of the very high sensitivity of the ion trap MS, relatively small air volumes (60 mL) are adequate to obtain the required or lower detection levels. An integrated air analysis system based on a GC-ion-trap MS has been investigated and is described. This system has a built-in cryogenic trap and necessary valving, internal standard gas sampling loop, and is controlled from the GC-MS workstation. The linearity, precision, and method detection levels obtainable with this system when using small volumes are reported. In addition, examples of the quantitative and qualitative analysis of ambient air samples are shown.  相似文献   

16.
Techniques have been developed to allow on-line simultaneous analysis of concentration and stable isotopic compositions ((13)C and (18)O) of dissolved carbon monoxide (CO) in natural water, using continuous-flow isotope ratio mass spectrometry (CF-IRMS). The analytical system consisted sequentially of a He-sparging bottle of water, a gas dryer, CO(2)-trapping stage using both Ascarite trap and silica-gel packed gas chromatography (GC), on-line oxidation to CO(2) using the Schütze reagent, cryofocusing, GC purification using a capillary column and measurement by CF-IRMS. Each sample analysis takes about 40 minutes. The detection limit with delta(13)C standard deviation of 0.5 per thousand is 300 pmol and that with delta(18)O deviation of 1.0 per thousand is 750 pmol. Analytical blanks associated with these methods are 21+/-9 pmol. The procedures are evaluated through analyses of temporally varying concentration and isotopic compositions of CO in an artificial lake on the university campus. The delta(13)C and delta(18)O values of CO showed wide variation in accordance with diurnal variation of CO concentration, probably due to significant isotopic effects during photochemical production and microbial oxidation of CO in the aquatic environment. The delta(13)C and delta(18)O values of CO should be a useful tool in studies of the mechanism and pathways of CO production and consumption in natural waters.  相似文献   

17.
Coupling of a cryogenic preconcentrator (PC) to a gas chromatograph/Fourier transform ion cyclotron resonance mass spectrometer (GC/FT-ICR MS) is reported. To demonstrate the analytical capabilities of the PC/GC/FT-ICR MS, headspace samples containing volatile organic compounds (VOCs) emitted from detached pine tree twigs were analyzed. Sub-ppm mass measurement accuracy (MMA) for highly resolved (m/Deltam(50%) > 150 k) terpene ions was achieved. Direct PC/GC/FT-ICR MS analyses revealed that detached twigs from pine trees emit acetone, camphor, and four detectable hydrocarbon isomers with C(10)H(16) empirical formula. The unknown analytes were identified based on accurate mass measurement and their mass spectral appearances. Authentic samples were used to confirm initially unknown identifications. Self-chemical-ionization (SCI) reactions furnished an additional dimension for rapid isomer differentiation of GC eluents in real time.  相似文献   

18.
吕怡兵  孙晓慧  付强 《色谱》2010,28(5):470-475
便携式气相色谱-质谱仪(便携式GC-MS)能同时对多组分复杂有机物进行定性定量分析,在环境监测尤其是事故现场应急监测中发挥越来越重要的作用。本文比较了便携式GC-MS与EPATO-14A方法分析测定环境空气中低浓度挥发性有机物(VOCs)的性能,并探讨了利用定量环(loop环)模式测定高浓度VOCs的准确度。结果表明,采用内标标准曲线定量,HAPSITE便携式GC-MS测定空气中VOCs的检出限与EPATO-14A方法相当,准确度和精密度略低,但均符合环境监测分析的要求。利用loop环可对大部分10-6级的高浓度VOCs样品进行较为准确的测定,在突发性环境污染事故中可以得到基本准确的结果。  相似文献   

19.
A novel needle-type sample preparation device was developed for the effective preconcentration of volatile organic compounds (VOCs) in indoor air before gas chromatography–mass spectrometry (GC–MS) analysis. To develop a device for extracting a wide range of VOCs typically found in indoor air, several types of particulate sorbents were tested as the extraction medium in the needle-type extraction device. To determine the content of these VOCs, air samples were collected for 30 min with the packed sorbent(s) in the extraction needle, and the extracted VOCs were thermally desorbed in a GC injection port by the direct insertion of the needle. A double-bed sorbent consisting of a needle packed with divinylbenzene and activated carbon particles exhibited excellent extraction and desorption performance and adequate extraction capacity for all the investigated VOCs. The results also clearly demonstrated that the proposed sample preparation method is a more rapid, simpler extraction/desorption technique than traditional sample preparation methods.  相似文献   

20.
王立  王继宗 《色谱》1999,17(5):456-458
提出了一系列的安全、方便、可靠、在线和可连续操作的热解吸/色谱分析柱制备S2OF10纯品、指数稀释法配制S2OF10标准样品、应用定量校正系数测定样品中痕量S2OF10的方法和技术。分别采用气相色谱、红外光谱、气相色谱/质谱等方法对色谱制备的S2OF10纯品进行了纯度分析和测定。配制S2OF10标准气体的体积分数范围为8.0×10-7~2.6×10-4。气相色谱测定S2OF10的定量校正系数为0.197,测定方法的相对误差范围为1.8%~20%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号