首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Heterogeneous reaction kinetics of gaseous nitric acid with deliquesced sodium chloride particles NaCl(aq) + HNO3(g) --> NaNO3(aq) + HCl(g) were investigated with a novel particle-on-substrate stagnation flow reactor (PS-SFR) approach under conditions, including particle size, relative humidity, and reaction time, directly relevant to the atmospheric chemistry of sea salt particles. Particles deposited onto an electron microscopy grid substrate were exposed to the reacting gas at atmospheric pressure and room temperature by impingement via a stagnation flow inside the reactor. The reactor design and choice of flow parameters were guided by computational fluid dynamics to ensure uniformity of the diffusion flux to all particles undergoing reaction. The reaction kinetics was followed by observing chloride depletion in the particles by computer-controlled scanning electron microscopy with energy-dispersive X-ray analysis (CCSEM/EDX). The validity of the current approach was examined first by conducting experiments with median dry particle diameter D(p) = 0.82 microm, 80% relative humidity, particle loading densities 4 x 10(4) 相似文献   

2.
Probe molecule spectroscopy and hygroscopic growth curves characterize the morphology of surfactant-coated aerosol particles as a function of relative humidity (RH). This study focuses on particles composed of either potassium iodide or sodium chloride and sodium dodecyl sulfate (SDS). At high RH, these mixed particles assume a reverse micelle type structure, and at low RH, they comprise a solid core of either KI or NaCl coated with SDS and water. The deliquescence relative humidity (DRH) and efflorescence relative humidity (ERH) of the inorganic fraction of the mixed particles are very similar to those of the pure salts. The surface polarity and morphology sampled by the coumarin 314 probe molecule ranges from that of a water-organic interface to that of an ionic surface and depends strongly on the RH and the amount of SDS. When the SDS coverage of the droplet just prior to efflorescence reaches approximately one monolayer, a thin soap film persists on the surface to values of RH much lower than the ERH. Both the electronic spectroscopy and photoelectric charging efficiency show a separate efflorescence for this layer at RH < 5%. The spectroscopy further reveals that there is a hysteresis associated with this low RH phase transition for both KI and NaCl cores.  相似文献   

3.
We study the efflorescence relative humidity (ERH) of particles composed of sodium chloride and sodium sulfate. Both experimental and theoretical investigations are conducted to explore the effects of particle size and mixing ratios between two inorganic materials on ERH. A previously developed theoretical model (Gao et al. J. Phys. Chem. A 2006, 110, 7602; ref 1) is applied as the framework to build a formulation assuming that one salt nucleates much faster than the other, and the critical nuclei formation of the former controls the rate of efflorescence. The predicted ERHs agree favorably with the experimental data, except for particles containing Na2SO4 in a mole fraction of around 0.25. At this composition, our model underestimates the ERH, indicating certain factors involved in the efflorescent processes that are overlooked in our formulation. Relative to particles larger than 40 nm, the Kelvin effect more significantly affects particles smaller than this size.  相似文献   

4.
为了深入理解沿海城市大气环境中NO2和海盐颗粒物的非均相反应规律,本研究使用漫反射红外傅立叶变换光谱(DRIFTS)比较研究了0%和20%相对湿度(relative humidty,RH)下NO2在湿海盐颗粒物表面的非均相反应.动力学测量表明硝酸盐的生成对NO2是二级反应,并且0%和20%相对湿度条件下,NO2分子浓度为1.96×1015molcules·cm-3时,反应增长阶段反应摄取系数分别为(5.51±0.19)×10-7和1.26×10-6.结果还显示相对湿度在30%以下时,海盐表面MgCl2·6H2O、CaCl2·2H2O所在点位通过释放结合水和吸附水汽,在海盐表面形成液态水的斑点,增强了反应持续能力.因此氯化钠表面非均相反应的研究可能会低估海盐颗粒物的非均相反应活性.  相似文献   

5.
The reaction of nitric acid with calcite aerosol at varying relative humidities has been studied under suspended particle conditions in an atmospheric reaction chamber using infrared absorption spectroscopy. The reactant concentration in the chamber, as well as the appearance of gas phase products and surface adsorbed species, was spectroscopically monitored before and after mixing with CaCO(3) (calcite) particles. The interaction with HNO(3) was found to lead to gas phase CO(2) evolution and increased water uptake due to heterogeneous conversion of the carbonate to particulate nitrate. The reaction was enhanced as the relative humidity of the system was increased, especially at relative humidities above the reported deliquescence point of particulate Ca(NO(3))(2). The measured reaction extent demonstrates that the total calcite particulate mass is available for reaction with HNO(3) and the conversion process is not limited to the particle surface. The spectroscopy of the surface formed nitrate suggests a highly concentrated solution environment with a significant degree of ion pairing. The implications of the HNO(3) loss and the formation of the particulate nitrate product for atmospheric chemistry are discussed.  相似文献   

6.
As aerosols, such as sea salt and mineral dust, are transported through the atmosphere they undergo heterogeneous reactions with nitrogen oxides to form nitrate salts. The nitrate salt can have quite different physicochemical properties than the original aerosol, resulting in an aerosol that will markedly differ in its climate impact, heterogeneous chemistry, and photoactivity. In this Feature Article, we will review some aspects of the importance of aqueous nitrate aerosols as well as describe a new multi-analysis aerosol reactor system (MAARS) that is used to measure the physicochemical properties of these atmospherically relevant aerosols. Here we show measurements of the hygroscopic properties, cloud condensation nuclei activity, and FTIR extinction of nitrate salt aerosol. In particular, we have measured the hygroscopic growth of 100 nm size-selected nitrate particles including NaNO3, Ca(NO3)2, Mg(NO3)2, and a 1:1 mixture of Ca(NO3)2 and Mg(NO3)2 as a function of relative humidity (RH) at 298 K. Using K?hler theory, we have quantified the water content of these particles with increasing RH. FTIR extinction measurements of the full size distribution of each of the nitrate aerosols are analyzed to yield information about the local solvation environment of the nitrate ions and the long-wavelength light scattering of the particles at different RH. Furthermore, we have measured and compared the cloud condensation nuclei (CCN) activity of CaCO3, a large component of mineral dust aerosol, and Ca(NO3)2, a product of atmospherically aged CaCO3 through reaction with nitrogen oxides, at supersaturations from 0.1% to 0.9%. These quantitative physicochemical data are needed if we are to better understand the chemistry as well as the climate effects of atmospheric aerosols as they are entrained, transported, reacted, and aged in the atmosphere. Our studies here focus on aqueous nitrate salts, the products of the reaction of nitrogen oxides with sea salt and mineral dust aerosol.  相似文献   

7.
8.
To understand how NO2 reacts with sea salt particles in the atmosphere of Mega-cities in coastal zones, the heterogeneous reaction of NO2 on the surface of wet sea salt was investigated with diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and ion chromatography (IC). Kinetic measurements indicated that nitrate formation on sea salt was second order in NO2 concentration and reactive uptake coefficients were (5.51 ± 0.19) × 10?7 and 1.26 ± 10?6 respectively under 0% and 20% relative humidity (RH) at NO2 molecular concentration of 1.96 × 1015 mol/cm3. The results showed that liquid water was formed at the site of MgCl2·6H2O, CaCl2·2H2O on the surface of sea salt and made the reaction more sustainable by releasing hydrated water and absorbing water from air even under a low RH (? 30%). Therefore, pure NaCl particles should not be used to represent sea salt in studies of the heterogeneous reaction with NO2.  相似文献   

9.
Heterogeneous reaction kinetics of gaseous nitric acid (HNO3) with calcium carbonate (CaCO3) particles was investigated using a particle-on-substrate stagnation flow reactor (PS-SFR). This technique utilizes the exposure of substrate deposited, isolated, and narrowly dispersed particles to a gas mixture of HNO3/H2O/N2, followed by microanalysis of individual reacted particles using computer-controlled scanning electron microscopy with energy-dispersive X-ray analysis (CCSEM/EDX). The first series of experiments were conducted at atmospheric pressure, room temperature and constant relative humidity (40%) with a median dry particle diameter of Dp = 0.85 mum, particle loading densities 2 x 104 /= 0.06 (x3//2). In a second series of experiments, HNO3 uptake on CaCO3 particles of the same size was examined over a wide range of relative humidity, from 10 to 80%. The net reaction probability was found to increase with increasing relative humidity, from gammanet >/= 0.003 at RH = 10% to 0.21 at 80%.  相似文献   

10.
In the presented work an optical levitation technique performed by means of a focused laser beam, Mie and Raman spectroscopy have been utilized for measuring hygroscopic growth curves and composition of laboratory generated single ammonium sulfate (AS) and internally mixed ammonium sulfate-glutaric acid (GA) droplets in the micrometer range. The generated particles have been found to immediately supersaturate (above 45wt% for AS) at 297 K after capturing in the laser beam. Further increase of the relative humidity (RH) up to 85% does not dilute the droplets under the saturation point. A spontaneous hygroscopic growth takes place at 73.5-78% RH for pure AS. The particle grows with an average factor of 1.62 at the deliquescence relative humidity (DRH). Efflorescence of AS occurs at 43% RH with a corresponding concentration of more than 85wt%. Independent of the mixing ratios in ranges 25/75, 50/50, 75/25% AS/GA mixed particles don't exist as a metastable supersaturated solution droplets in the 35-85% RH range. Instead of growing with increasing relative humidity internally mixed particles build up a solid crystalline layer on the surface. This crystalline phase is not further influenced by ambient relative humidities.  相似文献   

11.
Aerosol optical tweezers are used to probe the phase, morphology, and hygroscopicity of single aerosol particles consisting of an inorganic component, sodium chloride, and a water insoluble organic component, oleic acid. Coagulation of oleic acid aerosol with an optically trapped aqueous sodium chloride droplet leads to formation of a phase-separated particle with two partially engulfed liquid phases. The dependence of the phase and morphology of the trapped particle with variation in relative humidity (RH) is investigated by cavity enhanced Raman spectroscopy over the RH range <5% to >95%. The efflorescence and deliquescence behavior of the inorganic component is shown to be unaffected by the presence of the organic phase. Whereas efflorescence occurs promptly (<1 s), the deliquescence process requires both dissolution of the inorganic component and the adoption of an equilibrium morphology for the resulting two phase particle, occurring on a time-scale of <20 s. Comparative measurements of the hygroscopicity of mixed aqueous sodium chloride/oleic acid droplets with undoped aqueous sodium chloride droplets show that the oleic acid does not impact on the equilibration partitioning of water between the inorganic component and the gas phase or the time response of evaporation/condensation. The oxidative aging of the particles through reaction with ozone is shown to increase the hygroscopicity of the organic component.  相似文献   

12.
The classical homogeneous nucleation theory was employed to calculate the efflorescence relative humidity (ERH) of airborne ammonium sulfate particles with a wide size range (8 nm to 17 microm) at room temperature. The theoretical predictions are in good agreement with the experimentally measured values. When the ammonium sulfate particle is decreased in size, the ERH first decreases, reaches a minimum around 30% for particle diameter equal to about 30 nm, and then increases. It is for the first time that the Kelvin effect is theoretically verified to substantially affect the ERH of ammonium sulfate particles smaller than 30 nm, while the aerosol size is the dominant factor affecting the efflorescent behavior of ammonium sulfate particles larger than 50 nm.  相似文献   

13.
The infrared extinction spectra of aqueous NaBr aerosols at ambient temperature have been measured as a function of relative humidity. Submicron-sized aerosol particles atomized from aqueous NaBr solutions at various concentrations are dried and/or mixed with nitrogen at different humidities and spectroscopically monitored as they flow through an infrared absorption cell. Estimated dry particle median diameters range from 0.24 to 0.15 microm, as calculated from Mie extinction theory. Measured deliquescence and efflorescence relative humidities (35-40% and 25-30%, respectively) are in accordance with previously reported ones. Our results show that NaBr particles take up water only moderately over the deliquescence point, with a significant increase at relative humidities above 70%. The effect of particle size onto water uptake properties has been studied, indicating that smaller particles take up lower amounts of water, and only increase their size significantly at relative humidities near saturation. Particle composition and diameter growth factors have been calculated from spectral data and are shown to be consistent with those predicted from thermodynamic data and Kohler theory. Band centers of liquid water in NaBr aerosols relative to pure water are blue-shifted up to 50 cm-1 at low humidities. Particle structure and phase, together with atmospheric implications, are also discussed.  相似文献   

14.
Photochemistry of adsorbed nitrate   总被引:2,自引:0,他引:2  
In the atmosphere, gas-phase nitrogen oxides including nitric acid react with particle surfaces (e.g., mineral dust and sea salt aerosol) to yield adsorbed nitrate, yet little is known about the photochemistry of nitrate on the surface of these particles. In this study, nitrate adsorbed on alumina surfaces, a surrogate for mineral dust aerosol, is irradiated with broadband light (lambda > 300 nm) in the absence and presence of coadsorbed water, at <1% and 45 +/- 2% relative humidity (%RH), respectively, and molecular oxygen. Upon irradiation, the nitrate ion readily undergoes photolysis to yield nitrogen-containing gas-phase products, NO2, NO, and N2O. Although NO2, NO, and N2O form under the different conditions investigated, both coadsorbed water and molecular oxygen change the gas-phase product distribution, with NO being the major product under dry and humid conditions in the absence of molecular oxygen and NO2 the major product in the presence of molecular oxygen. To the best of our knowledge, this is the first study to investigate the role of solvation by coadsorbed water in the photochemistry of adsorbates at solid interfaces and the roles that molecular oxygen, adsorbed water, and relative humidity may have in photochemical processes on aerosol surfaces that have the potential to alter the chemical balance of the atmosphere.  相似文献   

15.
The heterogeneous chemistry of gas-phase acetic acid with CaCO(3)(calcite) aerosol was studied under varying conditions of relative humidity (RH) in an environmental reaction chamber. Infrared spectroscopy showed the loss of gas-phase reactant and the appearance of a gaseous product species, CO(2). The acetic acid is observed to adsorb onto the calcite aerosol through both a fast and a slow uptake channel. While the fast channel is relatively independent of RH, the slow channel exhibits enhanced uptake and reaction as the RH is increased. In additional experiments, the calcite aerosol was exposed to both nitric and acetic acids in the presence of water vapor. The rapid conversion of the particulate carbonate to nitrate and subsequent deliquescence significantly enhances the uptake and reaction of acetic acid. These results suggest a possible mechanism for observed correlations between particulate nitrate and organic acids in the atmosphere. Calcium rich mineral dust may be an important sink for simple organic acids.  相似文献   

16.
The uptake of formic (C1), propanoic (C3), butanoic (C4), and pentanoic (C5) acids onto ammonium nitrate (AN) has been investigated as a function of temperature and relative humidity using a Knudsen cell flow reactor coupled with FTIR-reflection absorption spectroscopy (FTIR-RAS). The uptake of acetone and methanol onto AN was also briefly studied. Initial uptake coefficients (gamma) were determined over the temperature range 200-240 K. Formic, propanoic, and butanoic acids exhibited efficient but temperature-dependent uptake on AN, with larger uptake coefficients observed at lower temperatures. Pentanoic acid was not taken up by AN under any of the conditions studied. Uptake of acetone and methanol onto AN was observed, but in insignificant amounts under atmospherically relevant conditions. Infrared spectra revealed that propanoic and butanoic acids ionized on the surface, despite the fact that the AN films were effloresced. Formic acid reacted with the AN film to produce ammonium formate and ionized nitric acid. Adding small amounts of water vapor (4% RH) to the chamber resulted in dramatically increased gamma values for all of the acids. Furthermore, the IR spectra showed the formation of a liquid layer when propanoic and butanoic acids adsorbed on the surface at RH = 20% and greater. Liquid water features were not observed at a similar relative humidity in the absence of the acids. These results show that small organic acids can be efficiently scavenged by AN and lead to enhanced water uptake under upper tropospheric conditions.  相似文献   

17.
Concentrated aqueous nitrate aerosols are present in the Earth's atmosphere as a result of heterogeneous reactions of sea salt and mineral dust aerosol with nitrogen oxides (e.g., NO2, NO3, HNO3 and N2O5). Because the water content of these aerosols depends on relative humidity (RH), the composition and nitrate ion concentration will also depend on RH. Unlike the original aerosols, aqueous nitrate aerosols are photochemically active at solar wavelengths. To gain a better understanding of the nitrate ion chromophore in concentrated aqueous nitrate aerosols, we have measured the ATR-FTIR and UV/vis spectra of concentrated nitrate solutions over a large concentration range. Both ATR-FTIR and UV/vis spectroscopy show changes in the nitrate ion spectra with increasing concentration. Ab initio calculations are used to aid in the assignment and interpretation of these spectra. From these data, we predict that the photoreactivity of aqueous nitrate aerosols will strongly depend on relative humidity as the molecular and electronic structure of the nitrate ion becomes increasingly perturbed from that of the isolated ion in highly concentrated atmospherically relevant solutions.  相似文献   

18.
Atmospheric aerosols collected by means of a cascade impaction system at the campus of the University of the Balearic Islands (Majorca, Spain) from November 1993 to February 1994 were analysed for chloride, nitrate, sulphate, ammonium, calcium, magnesium, sodium and potassium. Based on particle size distribution, the species studied were classified into three groups: (a) concentration decrease with particle size (sulphate and ammonium), (b) concentration increase with particle size (chloride, calcium, magnesium and sodium), and (c) independent of particle size (nitrate and potassium). A principal component analysis (PCA) revealed a clear relationship between particle size and analyte origin. Also, the origin of sulphate and potassium fine and coarse particles was found to be different.  相似文献   

19.
X‐ray phase contrast imaging (PCI) based on synchrotron radiation was introduced for the first time as an in situ imaging way to investigate sea salt phase change, i.e. deliquescence and crystallization in atmospheric environment. A performance on the deliquescence of pure NaCl, which is the dominant component in sea salt, demonstrated that this technique can directly observe the change of core particle and differentiate the outer water layer clearly in solid‐aqueous system of ~100 µm scale. The imaging results showed that sea salt particle deliquesced on a large scale of relative humidity (RH) between 34 and 97% RH as a solid–liquid drop, while no clear deliquescence RH was observed during the process. According to the drop size growth curve, sea salt deliquescence can be divided into three steps, namely water accumulating step (34–75% RH), bulk melting step (75–86% RH) and delay dissolving step (>86% RH), which are most probably dominated by grouped components as MgCl2/CaCl2/MgSO4, NaCl and Na2SO4/KCl/K2SO4, respectively. Instead at a sole RH, the crystallization of sea salt solution occurred at a range of 46–58% RH, which well agreed with the theory proposed by Ge et al. The aqueous‐solid condition provided by sea salt deliquescence and crystallization may greatly enhance the heterogeneous chemical reactions in atmosphere. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
The uptake of chlorine atoms on sodium chloride (NaCl) and synthetic sea salt (SSS) particles was studied using a discharge flow reactor coupled to a molecular beam mass spectrometer. The reactive surfaces were prepared by coating the inner surface of the reactor using two different methods: either by depositing size-selected particles on halocarbon wax or by spray depositing thin films using a constant output atomizer. The observed uptake coefficients of Cl˙ on NaCl particles are γ(NaCl)(Cl) ≈ 2 × 10(-2) for size-selected particles or γ(NaCl)(Cl) ≈ 5 × 10(-2) for thin films and for SSS particles γ(SSS)(Cl) ≈ 4 × 10(-3). Heterogeneous recombination of Cl atoms to Cl(2) molecules was observed for the two solid surfaces. The study was performed over the temperature range 258 to 353 K. The temperature dependence of the uptake was observed and the heat of adsorption of Cl˙ on NaCl particles was estimated at Q(ads) = 63 kJ mol(-1) assuming an Eley-Rideal mechanism. The role of surface adsorbed water has also been shown. The atmospheric implications of these findings are discussed briefly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号