首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ultrasonic wave propagation in human cancellous bone is considered. Reflection and transmission coefficients are derived for a slab of cancellous bone having an elastic frame using Biot's theory modified by the model of Johnson et al. [J. Fluid Mech. 176, 379-402 (1987)] for viscous exchange between fluid and structure. Numerical simulations of transmitted waves in the time domain are worked out by varying the modified Biot parameters. The variation is applied to the governing parameters and is about 20%. From this study, we can gain an insight into the sensitivity of each physical parameter used in this theory. Some parameters play an important role in slow-wave wave form, such as the viscous characteristic length lambda and pore fluid bulk modulus Kf. However, other parameters play an important role in the fast-wave wave form, such as solid density rhos and shear modulus N. We also note from these simulations that some parameters such as porosity phi, tortuosity alpha(infinty), thickness, solid bulk modulus Ks, and skeletal compressibility frame Kb, play an important role simultaneously in both fast and slow wave forms compared to other parameters which act on the wave form of just one of the two waves. The sensitivity of the modified Biot parameters with respect to the transmitted wave depends strongly on the coupling between the solid and fluid phases of the cancellous bone. Experimental results for slow and fast waves transmitted through human cancellous bone samples are given and compared with theoretical predictions.  相似文献   

2.
Hosokawa A 《Ultrasonics》2006,44(Z1):e227-e231
The trabecular frame of cancellous bone has a high degree of porosity, anisotropy and inhomogeneity. The propagation of ultrasonic waves in cancellous bone is significantly affected by the trabecular structure. In this paper, two two-dimensional finite-difference time-domain (FDTD) methods, which were the popular viscoelastic FDTD method for a viscoelastic medium and Biot's FDTD method for a fluid-saturated porous medium, have been applied to numerically analyze the ultrasonic pulse waves propagating through bovine cancellous bone in the directions parallel and perpendicular to the trabecular alignment. The Biot's fast and slow longitudinal waves, which were identified in previous experiments for the propagation parallel to the trabecular orientation, could be analyzed using Biot's FDTD method rather than the viscoelastic FDTD method. For the single wave propagation in the perpendicular direction, on the other hand, the viscoelastic FDTD result was found to be in more good agreement with the experimental result.  相似文献   

3.
This paper concerns the ultrasonic characterization of human cancellous bone samples by solving the inverse problem using experimental transmitted signals. The ultrasonic propagation in cancellous bone is modeled using the Biot theory modified by the Johnson et al. model for viscous exchange between fluid and structure. The sensitivity of the Young modulus and the Poisson ratio of the skeletal frame is studied showing their effect on the fast and slow wave forms. The inverse problem is solved numerically by the least squares method. Five parameters are inverted: the porosity, tortuosity, viscous characteristic length, Young modulus, and Poisson ratio of the skeletal frame. The minimization of the discrepancy between experiment and theory is made in the time domain. The inverse problem is shown to be well posed, and its solution to be unique. Experimental results for slow and fast waves transmitted through human cancellous bone samples are given and compared with theoretical predictions.  相似文献   

4.
This paper describes preliminary observations of ultrasonic wave propagation in air-saturated defatted cancellous bone from the human vertebra. Using a broadband pulse transmission system, attenuation and phase velocity were measured over a wide frequency range (100 kHz-1 MHz). The observed behaviour was consistent with that expected for the decoupled slow wave predicted by Biot's theory. Velocity was lower than that of free air, and there was marked frequency-dependent attenuation and velocity dispersion. The tortuosity (alpha) of the trabecular microstructure was estimated from the high frequency limit of the dispersion curve, with a mean value of alpha = 1.040 +/- 0.004 obtained in five specimens. Ultrasonic measurements in air represent a valuable new approach, capable of yielding parameters that directly characterise bone structure. Furthermore, they may give useful insights into wave propagation in bone in vivo, where the trabecular framework is saturated with marrow fat rather than air.  相似文献   

5.
超声诊断骨质疏松症中松质骨的模型   总被引:1,自引:0,他引:1       下载免费PDF全文
骨质疏松症(OP)是老龄化社会中影响健康的一个重要问题,超声技术已成为诊断骨质疏松症的一种常用方法。文中综述了近年来用超声诊断骨质疏松症中松质骨模型研究的进展,对棒状模型、流体多孔介质模型(Biot理论)和层状模型(schoenberg理论)进行了分析和讨论,指出了各理论模型存在的缺陷,对下一步的研究工作提出了建议。  相似文献   

6.
This paper is devoted to the experimental determination of distinctive macroscopic structural (porosity, tortuosity, and permeability) and mechanical (Biot-Willis elastic constants) properties of human trabecular bones. Then, the obtained data may serve as input parameters for modeling wave propagation in cancellous bones using Biot's theory. The goal of the study was to obtain experimentally those characteristics for statistically representative group of human bones (35 specimens) obtained from a single skeletal site (proximal femur). The structural parameters were determined using techniques devoted to the characterization of porous materials: electrical spectroscopy, water permeametry, and microcomputer tomography. The macroscopic mechanical properties, Biot-Willis elastic constants, were derived based on the theoretical consideration of Biot's theory, micromechanical statistical models, and experimental results of ultrasonic studies for unsaturated cancellous bones. Our results concerning structural parameters are consistent with the data presented by the other authors, while macroscopic mechanical properties measured within our studies are situated between the other published data. The discrepancies are mainly attributed to different mechanical properties of the skeleton frame, due to strong structural anisotropy varying from site to site. The results enlighten the difficulty to use Biot's theory for modeling wave propagation in cancellous bone, implying necessity of individual evaluation of input parameters.  相似文献   

7.
Quantitative ultrasonic characterization of cancellous bone can be complicated by artifacts introduced by analyzing acquired data consisting of two propagating waves (a fast wave and a slow wave) as if only one wave were present. Recovering the ultrasonic properties of overlapping fast and slow waves could therefore lead to enhancement of bone quality assessment. The current study uses Bayesian probability theory to estimate phase velocity and normalized broadband ultrasonic attenuation (nBUA) parameters in a model of fast and slow wave propagation. Calculations are carried out using Markov chain Monte Carlo with simulated annealing to approximate the marginal posterior probability densities for parameters in the model. The technique is applied to simulated data, to data acquired on two phantoms capable of generating two waves in acquired signals, and to data acquired on a human femur condyle specimen. The models are in good agreement with both the simulated and experimental data, and the values of the estimated ultrasonic parameters fall within expected ranges.  相似文献   

8.
In cancellous bone, longitudinal waves often separate into fast and slow waves depending on the alignment of bone trabeculae in the propagation path. This interesting phenomenon becomes an effective tool for the diagnosis of osteoporosis because wave propagation behavior depends on the bone structure. Since the fast wave mainly propagates in trabeculae, this wave is considered to reflect the structure of trabeculae. For a new diagnosis method using the information of this fast wave, therefore, it is necessary to understand the generation mechanism and propagation behavior precisely. In this study, the generation process of fast wave was examined by numerical simulations using elastic finite-difference time-domain (FDTD) method and experimental measurements. As simulation models, three-dimensional X-ray computer tomography (CT) data of actual bone samples were used. Simulation and experimental results showed that the attenuation of fast wave was always higher in the early state of propagation, and they gradually decreased as the wave propagated in bone. This phenomenon is supposed to come from the complicated propagating paths of fast waves in cancellous bone.  相似文献   

9.
The use of Biot theory for modelling ultrasonic wave propagation in porous media involves the definition of a "critical frequency" above which both fast and slow compressional waves will, in principle, propagate. Critical frequencies have been evaluated for healthy and osteoporotic cancellous bone filled with water or marrow, using data from the literature. The range of pore sizes in bone gives rise to a critical frequency band rather than a single critical frequency, the mean of which is lower for osteoporotic bone than normal bone. However, the critical frequency is a theoretical concept and previous researchers considered a more realistic "viscous frequency" above which both fast and slow waves may be experimentally observed. Viscous frequencies in bone are found to be several orders of magnitude greater than calculated critical frequencies. Whereas two waves may well be observed at all ultrasonic frequencies for water-filled cancellous bone at 20 degrees C, it is probable megahertz frequencies would be needed for observation of two waves in vivo.  相似文献   

10.
The presence of two longitudinal waves in porous media is predicted by Biot's theory and has been confirmed experimentally in cancellous bone. When cancellous bone samples are interrogated in through-transmission, these two waves can overlap in time. Previously, the Modified Least-Squares Prony's (MLSP) method was validated for estimation of amplitudes, attenuation coefficients, and phase velocities of fast and slow waves, but tended to overestimate phase velocities by up to about 5%. In the present paper, a pre-processing chirp filter to mitigate the phase velocity bias is derived. The MLSP/chirp filter (MLSPCF) method was tested for decomposition of a 500 kHz-center-frequency signal containing two overlapping components: one passing through a low-density-polyethylene plate (fast wave) and another passing through a cancellous-bone-mimicking phantom material (slow wave). The chirp filter reduced phase velocity bias from 100 m/s (5.1%) to 69 m/s (3.5%) (fast wave) and from 29 m/s (1.9%) to 10 m/s (0.7%) (slow wave). Similar improvements were found for 1) measurements in polycarbonate (fast wave) and a cancellous-bone-mimicking phantom (slow wave), and 2) a simulation based on parameters mimicking bovine cancellous bone. The MLSPCF method did not offer consistent improvement in estimates of attenuation coefficient or amplitude.  相似文献   

11.
This Letter is an extension to a multilayer model of porous bone first proposed by Hughes et al. [Ultrasound Med. Biol. 25, 811-821 (1999)]. Both slow and fast compressional waves propagate when the acoustic wave propagation is parallel to the trabecular alignment. However, a slow wave disappears at high refraction angles. To explain this phenomenon, the multilayer model is extended to compute group velocity surface and arrival times with an angle. Two major effects are highlighted as the refraction angle increases. First, the energy of the slow wave is refracted from the phase propagation direction. Second, the signals of fast and slow waves overlap. As a consequence, the slow wave may not be observed for a refraction angle greater than 40 degrees, which is in agreement with previous experimental data published by Hughes et al. and others.  相似文献   

12.
Biot's theory for elastic propagation in porous media has previously been shown to be useful for modeling the dependence of phase velocity on porosity in bovine cancellous bone in vitro. In the present study, Biot's theory is applied to measurements of porosity-dependent phase velocity in 53 human calcanea in vitro. Porosity was measured using microcomputed tomography for some samples (n = 23) and estimated based on bone mineral densitometry for the remaining samples (n = 30). The phase velocity at 500 kHz was measured in a water tank using a through-transmission technique. Biot's theory performed well for the prediction of the dependence of sound speed on porosity. The trend was quasilinear, but both the theory and experiment show similar slight curvature. The root mean square error (RMSE) of predicted versus measured sound speed was 15.8 m/s.  相似文献   

13.
Simple approximate relations are proposed for the viscous attenuation per cycle of the fast compressional and shear waves in the low-to-intermediate frequency range. Corresponding closed-form formulas are derived for frequencies at which maximum viscous attenuation per cycle occurs according to the Biot-Stoll theory of elastic wave propagation in marine sediments. In the new formulas, Biot's approximation [M. A. Biot, J. Acoust. Soc. Am. 34, 1254-1264 (1962)] for the frequency-dependent viscosity correction factor F(f) and the assumption of relatively low specific loss (Q(-1)<(0.2) [J. Geertsma and D. C. Smith, Geophysics 26(2), 169-181 (1962)] are used to provide an accurate representation of the fast compressional and shear wave attenuation from low frequencies through a transition region extending to two or three times Biot's critical frequency f(c). The approximate viscodynamic behavior of marine sediments for the fast compressional and shear waves shows similarities to that of a "homogeneous relaxation" process for an anelastic linear element [A. M. Freudenthal and H. Geiringer, Encyclopedia of Physics (Springer-Verlag. 1958), Vol. 6].  相似文献   

14.
The influence of cancellous bone microstructure on the ultrasonic wave propagation of fast and slow waves was experimentally investigated. Four spherical cancellous bone specimens extracted from two bovine femora were prepared for the estimation of acoustical and structural anisotropies of cancellous bone. In vitro measurements were performed using a PVDF transducer (excited by a single sinusoidal wave at 1 MHz) by rotating the spherical specimens. In addition, the mean intercept length (MIL) and bone volume fraction (BV/TV) were estimated by X-ray micro-computed tomography. Separation of the fast and slow waves was clearly observed in two specimens. The fast wave speed was strongly dependent on the wave propagation direction, with the maximum speed along the main trabecular direction. The fast wave speed increased with the MIL. The slow wave speed, however, was almost constant. The fast wave speeds were statistically higher, and their amplitudes were statistically lower in the case of wave separation than in that of wave overlap.  相似文献   

15.
王婷  崔志文  刘金霞  王克协 《物理学报》2018,67(11):114301-114301
考虑孔隙流体中含有少量气泡,且气泡在声波作用下线性振动,研究声波在这种孔隙介质中的传播特性.本文先由流体质量守恒方程和孔隙度微分与流体压力微分的关系推导出了含有气泡形式的渗流连续性方程;在处理渗流连续性方程中的气体体积分数时间导数时,应用Commander气泡线性振动理论导出气体体积分数时间导数与流体压强时间导数的关系,进而得到了修正的Biot形式的渗流连续性方程;最后结合Biot动力学方程求得了含气泡形式的位移场方程,便可得到两类纵波及一类横波的声学特性.通过对快、慢纵波的频散、衰减及两类波引起的流体位移与固体位移关系的考察,发现少量气泡的存在对快纵波和慢纵波的传播特性影响较大.  相似文献   

16.
The propagation of the Biot slow wave in a fluid-saturated porous medium at low frequencies is investigated by asymptotic methods. It is proven that the Biot wave has a bifurcation behavior depending on its wave number. The bifurcation occurs in a neighborhood of the critical value k(cr), which depends on the permeability of a medium and the viscosity of a fluid. The P2 wave is fully attenuated if its wave number is smaller than k(cr) and it becomes propagatory with wave numbers bigger than k(cr). Asymptotic formulas for the phase velocity and attenuation of the Biot wave are derived.  相似文献   

17.
18.
崔志文  刘金霞  姚桂锦  王克协 《中国物理 B》2010,19(8):84301-084301
<正>The property of acoustic guided waves generated in a fluid-filled borehole surrounded by a non-Newtonian (Maxwell) fluid-saturated porous formation with a permeable wall is investigated.The influence of non-Newtonian effects on acoustic guided waves such as Stoneley waves,pseudo-Rayleigh waves,flexural waves,and screw waves propagations in a fluid-filled borehole is demonstrated based on the generalized Biot-Tsiklauri model by calculating their velocity dispersion and attenuation coefficients.The corresponding acoustic waveforms illustrate their properties in time domain.The results are also compared with those based on generalized Biot's theory.The results show that the influence of non-Newtonian effect on acoustic guided wave,especially on the attenuation coefficient of guided wave propagation in borehole is noticeable.  相似文献   

19.
石建成  郑佩  高哲 《计算物理》2019,36(3):298-304
针对弹性波衰减与速度频散问题,基于Pride和Berryman的介观非均匀双重孔隙介质理论模型,推导一组用位移表示,另一组用位移及孔压表示的全新形式的耦合动力学方程组,并基于双孔介质模型,推导出弹性波的相速度与逆品质因子的解析式,重点讨论介观尺度下的局域流动对弹性波传播特性的影响.数值算例表明:快波的速度随着频率的增加而迅速增加,且介观流动损失比Biot损失至少高一个数量级;同时局域流对慢波也有着不同程度的影响.证实了局域流是波能损失和相速度频散的主要因素.  相似文献   

20.
Padilla F  Bossy E  Haiat G  Jenson F  Laugier P 《Ultrasonics》2006,44(Z1):e239-e243
Numerical simulation of wave propagation is performed through 31 3D volumes of trabecular bone. These volumes were reconstructed from high synchrotron microtomography experiments and are used as the input geometry in a simulation software developed in our laboratory. The simulation algorithm accounts for propagation into both the saturating fluid and bone but absorption is not taken into account. We show that 3D simulation predicts phenomena observed experimentally in trabecular bones : linear frequency dependence of attenuation, increase of attenuation and speed of sound with the bone volume fraction, negative phase velocity dispersion in most of the specimens, propagation of fast and slow wave depending on the orientation of the trabecular network compared to the direction of propagation of the ultrasound. Moreover, the predicted attenuation is in very close agreement with the experimental one measured on the same specimens. Coupling numerical simulation with real bone architecture therefore provides a powerful tool to investigate the physics of ultrasound propagation in trabecular structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号