首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Schiff base ligands have long been successfully employed as ligands in combination with various metals to give catalysts capable of realizing a variety of synthetic transformations. One of the most widely used Schiff base ligands, the "salen" ligand, has been extensively researched. Recently, there has been increased interest in π-conjugated salen systems, known as "salphen" ligands, as a result of the differences in reactivity of the complexes in catalytic applications compared with the salen analogues. Complexes of salphen ligands display interesting photophysical and supramolecular properties which are not always observed with salen systems as a result of their π-conjugation. This tutorial review therefore describes the most significant advances recently made with salphen and related π-conjugated ligand systems.  相似文献   

2.
Liu Z  Anson FC 《Inorganic chemistry》2001,40(6):1329-1333
Fifteen Schiff base ligands were synthesized and used to form complexes with vanadium in oxidation states III, IV, and V. Electrochemical and spectral characteristics of the complexes were evaluated and compared. In acidified solutions in acetonitrile the vanadium(IV) complexes undergo reversible disproportionation to form V(III) and V(V) complexes. With several of the ligands the V(III) complexes are much more stable in the presence of acid than is the previously studied complex with salen, an unelaborated Schiff base ligand (H(2) salen = N,N'-ethylenebis(salicylideneamine)). Equilibrium constants for the disproportionation were evaluated. The vanadium(III) complexes reduce dioxygen to form two oxo ligands. The reaction is stoichiometric in the absence of acid, and second-order rate constants were evaluated. In the presence of acid some of the complexes investigated participate in a catalytic electroreduction of dioxygen.  相似文献   

3.
The titanium(IV) complexes of the unsymmetrical Schiff base ligands (L) of ethylenediamine and salicylaldehyde, o‐hydroxyacetophenone, o‐hydroxynapthaldehyde have been prepared and characterized when unsymmetrical ligands are synthesized through in situ partial displacement of the symmetrical bis‐Schiff bases. Compounds have been characterized by elemental analysis, electronic, (Infra‐red) IR, 1H NMR spectral data, magnetic susceptibility measurement and molar conductance and eight coordinated geometry of the complexes was proposed. The complexes have been found to posses 1:2:1 (M:L:B) stoichiometry (B is the secondary ligand). The bio‐efficacy of the prepared complexes has been examined against the growth of bacteria and fungi in vitro to evaluate their anti‐microbial potential.  相似文献   

4.
Free imine imidazol-2-imine ligands with two different substitution patterns have been isolated for the first time and they were found to exist as an equilibrium mixture of geometric and mesomeric isomers. The relative ratios of these isomers are dependent on both the nature of the substituents and of the solvent. The synthesis of the titanium(IV) alkyl and arylimido complexes of these ligands was unexpectedly found to be very selective and was successfully achieved only with the lesser sterically-demanding 2,4,6-trimethylphenyl derivative IMesN^Imine 2a. The solid-state structure of the alkylimido complex further confirms the zwitterionic character of the ligand. The isolated titanium imido complexes were found to be active catalysts for the polymerisation of ethylene.  相似文献   

5.
通过NH2-MCM-41与水杨醛反应得到席夫碱配体,然后加入八水氧氯化锆形成络合物,制得Zr(IV)-salen-MCM-41催化剂。采用X射线衍射、N2吸附-脱附、热重、红外光谱、电感耦合等离子体发射光谱和能量散射谱等分析手段对催化剂结构进行了表征。在含有该催化剂的体系中进行了硫化物选择氧化为亚砜以及醛与丙二腈和氰乙酸乙酯的Knoveonagel缩合反应,并考察了催化剂的循环使用性能。  相似文献   

6.
A series of bis(thiazolinyl)- and bis(thiazolyl)pyridine Thio-Pybox ligands and their metal complexes of chromium(III), iron(II), cobalt(II) and nickel(II) has been prepared, as well as a nickel(II) complex containing a monoanionic bis(thiazolinyl)phenyl Thio-Phebox ligand. These new metal complexes have been characterised and used as catalysts, in combination with the co-catalyst MAO, for the polymerisation of ethylene and for the polymerisation of butadiene. In the case of ethylene polymerisation, the Thio-Pybox and Thio-Phebox metal complexes have shown relatively low polymerisation activities, much lower compared to the related bis(imino)pyridine complexes of the same metals. In the polymerisation of butadiene, several Thio-Pybox cobalt(II) complexes show very high activities, significantly higher than the other metal complexes with the same ligand. It is the metal, rather than the ligand, that appears to have the most profound effect on the catalytic activity in butadiene polymerisation, unlike in the polymerisation of ethylene, where bis(imino)pyridine ligands provide highly active catalysts for a range of 1st row transition metals.  相似文献   

7.
A combination of high-resolution electrospray mass spectrometry and (1)H NMR spectroscopy has been used to prove that when a mixture of [(salen)TiO]2 complexes containing two different salen ligands (salen and salen') is formed, an equilibrium is established between the homodimers and the heterodimer [(salen)TiO2Ti(salen')]. Depending upon the structure and stereochemistry of the two salen ligands, the equilibrium may favor either the homodimers or the heterodimer. Extension of this process to mixtures of titanium(salen) complexes [(salen)TiO]2 and vanadium (V)(salen') complexes [(salen')VO] (+)Cl (-) allowed the in situ formation of the heterobimetallic complex [(salen)TiO2V(salen')] (+)X (-) to be confirmed for all combinations of salen ligands studied except when the salen ligand attached to titanium contained highly electron-withdrawing nitro-groups. The rate of equilibration between heterobimetallic complexes is faster than that between two titanium complexes as determined by line broadening in the (1)H NMR spectra. These structural results explain the strong rate-inhibiting effect of vanadium (V)(salen) complexes in asymmetric cyanohydrin synthesis catalyzed by [(salen)TiO]2 complexes. It has also been demonstrated for the first time that the titanium and vanadium complexes can undergo exchange of salen ligands and that this is catalyzed by protic solvents. However, the ligand exchange is relatively slow (occurring on a time scale of days at room temperature) and so does not complicate studies aimed at using heterobimetallic titanium and vanadium salen complexes as asymmetric catalysts. Attempts to obtain a crystal structure of a heterobimetallic salen complex led instead to the isolation of a trinuclear titanium(salen) complex, the formation of which is also consistent with the catalytic results obtained previously.  相似文献   

8.
The synthesis and characterization of substituted ONNO-donor salen-type Schiff base complexes of general formula [MIII(L)Cl] (L = Schiff base ligand, M = Fe, Co) is reported. The complexes have been applied as catalysts for the coupling of carbon dioxide and styrene oxide in the presence of tetrabutylammonium bromide as a co-catalyst. The reactions were carried out under relatively low-pressure and solvent-free conditions. The effects of the metal center, ligands, and various substituents on the peripheral sites of the ligand on the coupling reaction were investigated. The catalyst systems were found to be selective for the coupling of CO2 and styrene oxide, resulting in cyclic styrene carbonate. The cobalt(III) complex with no substituents on the ligand showed higher activity (TON = 1297) than the corresponding iron(III) complex (TON = 814); however, the iron(III)-based catalysts bearing electron-withdrawing substituents on the salen ligands (NEt3, TON = 1732) showed the highest catalytic activity under similar reaction conditions. The activity of one of the cobalt(III) complexes toward the coupling of 1-butene oxide, cyclohexene oxide and propylene oxide with CO2 was evaluated, revealing a notable activity for the coupling of 1-butene oxide.  相似文献   

9.
Eleven bis(dimethylphenolato) Ti(IV) complexes of salen ligands with different steric and electronic properties due to different aromatic substituents at the ortho and para positions are reported, and their cytotoxicity toward HT-29 and OVCAR-1 cells and its dependence on hydrolytic behavior are discussed. Eight complexes of this series were analyzed by X-ray crystallography, confirming the trans geometry of the labile ligands with otherwise relatively similar coordination features to those of cis-salan analogues. Relatively high and similar hydrolytic stability is observed for all complexes, with t(1/2) values for labile ligand hydrolysis of 2-11 h in 10% D(2)O solutions. In contrast, varying cytotoxicities were achieved, identifying selected members as the first trans-Ti(IV) complexes reported as anticancer agents. Steric bulk all around the complex diminished the activity, where a complex with no aromatic substitutions is especially active and complexes substituted particularly at the ortho positions are mostly inactive, including ortho-halogenated and ortho-tert-butylated, with one exception of the ortho-methoxylated complex demonstrating appreciable activity. In contrast, para-halogenation provided the complexes of highest cytotoxic activity in this series (IC(50) as low as 1.0 ± 0.3 μM), with activity exceeding that of cisplatin by up to 15-fold. Reaction of a representative complex with ortho-catechol yielded a "cis"-Ti(IV) complex following rearrangement of the salen ligand on the metal center, with highly similar coordination features and geometry to those of the catecholato salan analogues, suggesting that the complexes operate by similar mechanisms and rearrangement of the salen ligand may occur upon introduction of a suitable chelating target. In additional cytotoxicity measurements, a salen complex was preincubated in the biological medium for varying periods prior to cell addition, revealing that marked cytotoxicity of the salen complex is retained for longer preincubation periods relative to known Ti(IV) complexes, suggesting that the hydrolysis products may also induce cytotoxic effects, thus reducing stability concerns.  相似文献   

10.
New Schiff base complexes of zinc(II), copper(II), nickel(II), and vanadium(IV) were synthesized using the Schiff base ligand formed by the condensation of 2-aminoethanethiol and 2-hydroxy-1-naphthaldehyde. The tetradentate Schiff base ligand N,N´-(3,4-dithiahexane-1,6-diyl)bis(2-hydroxy-1-naphthaleneimine), containing a disulfide bond, was coordinated to the metal(II) ions through the two azomethine nitrogen atoms and two deprotonated phenolic oxygens of two different ligands which was connected to each other by sulfur-sulfur bond. The molar conductivity values of complexes in DMSO solvent implied the presence of nonelectrolyte species. The fluorescence properties of the Schiff base ligand and its complexes were studied in dimethylsulfoxide. The Schiff base ligand and its complexes were characterized by FT-IR, 1H NMR, UV/Vis spectroscopies, elemental analysis, and conductometry. The crystal structure of tetradentate Schiff base ligand was characterized by single crystal X-ray diffraction. The Schiff base ligand was contained disulfide bond. Furthermore, the binding interaction of these complexes with calf thymus DNA (CT-DNA) was investigated by different methods.  相似文献   

11.
The electrochemical properties of vanadyl(IV) derivatives, namely salen Schiff base complexes of the type [VO(Salen)] (5-BrSalen, 5-NO2Salen, 5-MeOSalen, salpn (bis(salicylaldehyde)-1,3-propanediamine, 5-BrSalpn, 5-NO2Salpn, 5-MeOSalpn, Me2Salen, Salophen, 5-BrSalophen, and 5-MeOSalophen) were investigated. The equatorial Schiff base ligands affect the oxidation potentials via interaction with the d-orbitals of the vanadyl metal ion. The cathodic peak potential (Epc) becomes less negative according to the sequence MeO- < H- < Br- < NO2?.  相似文献   

12.
Symmetrical bis‐Schiff bases (LH 2) have been synthesized by the condensation of 1,6‐hexanediamine (hn) and carbonyl or dicarbonyl. One of the synthesized Schiff bases has been subjected to the molecular docking for the prediction of their potentiality against coronavirus (SARS‐CoV‐2). Molecular docking revealed that tested Schiff base possessed high binding affinity with the receptor protein of SARS CoV‐2 compared with hydroxychloroquine (HCQ). The ADMET analysis showed that ligand is non‐carcinogenic and less toxic than standard HCQ. Schiff bases acting as dibasic tetra‐dentate ligands formed titanium (IV) complexes of the type [TiL(H2O)2Cl2] or [TiL(H2O)2]Cl2 being coordinated through ONNO donor atoms. Ligands and complexes were characterized by the elemental analysis and physicochemical and spectroscopic data including FTIR, 1H NMR, mass spectra, UV‐Visible spectra, molar conductance, and magnetic measurement. Optimized structures obtained from quantum chemical calculations supported the formation of complexes. Antibacterial, antifungal, and anti‐oxidant activity assessments have been studied for synthesized ligands and complexes.  相似文献   

13.
A computational study with the IMOMM(Becke3LYP:MM3) method is carried out on the mechanism of the enantioselective reaction of complex V(O)(L)(OOH), L= bulky tridentate Schiff base, and bis(tert-butyl) disulfide. The reaction with a given L ligand A is first systematically studied: different conformers of the catalyst are optimized, and the large number of associated transition states are systematically searched. The study is then extended to the geometry optimization of selected transition states associated to other ligands B, C, and D, similar to A but differing in the nature of certain substituents R1, R2, R3. The experimental trends in selectivity for catalysts based on ligands A to D are faithfully reproduced by the calculations. Analysis of the computational results leads finally to the formulation of a simple model that can explain one of the most remarkable aspect of this reaction, namely the large effect on enantioselectivity of ligands seemingly far from each other in the catalyst.  相似文献   

14.
Electrospray ionization in combination with tandem mass spectrometric techniques has been employed to study the formation of oxomanganese-salen complexes upon oxidation of [Mn(III)(salen)]+ cations as well as the properties and reactions of the oxidized species in the gas phase. Two species could be characterized as the principal oxidation products: the oxomanganese(v) complex, [Mn=O(salen)]+, which is the actual oxygen-transfer agent in epoxidation reactions, and the dinuclear, mu-oxo bridged [L(salen)Mn-O-Mn(salen)L]2+ with two terminal ligands L; the latter acts as a reservoir species. The effects of various substituents in the 5- and 5'-positions, respectively, of the salen ligand on the reactivity of the epoxidation catalyst were determined quantitatively from CID (collision-induced dissociation) experiments and B3LYP density functional calculations. Accordingly, the effect of axial donor ligands on the reactivity of the epoxidation catalyst was studied. Electron-withdrawing substitutents on the salen ligand and additional axial ligands decrease the stability and thus enhance the reactivity of the Mn=O moiety, while electron-donating salen substituents have a strong stabilizing effect.  相似文献   

15.
A Zn(II) complex with an organoselenium substituted Schiff base, bis{2-[(benzylimino)methyl]-4,6-dihydroselenophenol}Zn(II), has been synthesized and characterized by elemental analyses and X-ray diffraction. Zn(II) is four-coordinated by two phenolate O and two imine N from two organoselenium substituted Schiff-base ligands, forming a distorted tetrahedral geometry. The title complex and its ligand were tested in vitro for their antibacterial and antitumor activity with the complex showing higher antibacterial and antitumor activities.  相似文献   

16.
Metal (M=Zn(II), Ni(II), Cu(II)) complexes with tetradentate Schiff base ligand, bis(pyrrol-2-ylmethyleneamine)phenyl, has been synthesized and characterized by elemental analyses, (1)H NMR, mass spectra and UV-vis spectra. The standard association constants (K(theta)) and the thermodynamic parameters (Delta(r)H(m)(theta),Delta(r)S(m)(theta),Delta(r)G(m)(theta)) for axial coordination of imidazole derivatives with these Shiff base complexes were measured with UV-vis spectrophotometric titration. The decrease of enthalpy is found to be the drive of the axial coordination. Our Schiff base complexes can incorporate two axial ligands, except 2-Et-4-MeIm with two big substituents of great steric bulk according to stoichiometry of 1:1. ZnL displays high selectively binding to imidazole due to the steric bulk effect. Supporting density functional theory (DFT) calculations have been undertaken on B3LYP/6-31G(d) level.  相似文献   

17.
Oxygen evolution was observed upon mixing solid manganese(III) bidentate Schiff base complexes with aqueous solutions of cerium(IV) ammonium nitrate. However, oxygen evolution was not observed upon mixing solutions of the complexes (in acetonitrile) with Ce(IV). Electron-withdrawing substituents on the Schiff base ligands (NO2, Br) enhanced the reactivity of the manganese complexes toward oxygen evolution. Oxygen evolution was also affected by R groups on the ligands, in the order Me > Et ≫ Bz. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
Achiral tetrahydrosalen ligands have been employed in the synthesis of chiral C(2)-symmetric titanium complexes. When combined with tetrahydrosalen ligands 2a and 2b, titanium tetraisopropoxide liberated 2 equiv of isopropyl alcohol and generated the (tetrahydrosalen)Ti(O-i-Pr)(2) complexes 3a and 3b. These complexes were shown to be C(2)-symmetric by (1)H and (13)C[(1)H] NMR spectrometry and X-ray crystallography. X-ray structures of 3a and 3b indicate that the bonding of the tetrahydrosalen ligand to titanium is different than the bonding of salen ligands to titanium. Whereas salen ligands usually bind to titanium in a planar arrangement, the tetrahydrosalen is bonded with the phenoxide oxygens mutually trans. When bound in this fashion, the nitrogens of the tetrahydrosalen ligand and the titanium become stereogenic centers. The use of titanium complexes of high enantiopurity in the generation of tetrahydrosalen titanium adducts resulted in a maximum diastereoselectivity of 2:1. The diastereoselectivity obtained using chiral titanium alkoxide complexes was greater than the diastereoselectivity observed when a tetrahydrosalen ligand derived from (S,S)-trans-diaminocyclohexane was employed.  相似文献   

19.
[reaction: see text] The bimetallic titanium complex [(salen)TiO](2), where salen is the ligand derived from (R,R)-cyclohexanediamine and 3,5-di-tert-butyl-salicylaldehyde, has been shown to catalyze the asymmetric addition of ethyl cyanoformate to aldehydes leading to cyanohydrin carbonates with high enantiomeric excesses.  相似文献   

20.
The reactions of a range of aromatic primary amines with pyridine-2-carboxaldehyde were reported, highlighting the effect of the substituents of the amine on the outcomes of the Schiff base reactions. The variant products of the Schiff base reactions were reacted with cis-[PtCl2(DMSO)2], generating platinum(II) complexes with PtCl2(N^N) general formula. The ligands and platinum(II) complexes were identified and characterized by IR and NMR spectroscopic methods. Single crystal XRD offered structural confirmation for three of the organic compounds and two platinum complexes. The spectral, antimicrobial, DNA-binding and molecular docking of the platinum complexes were studied, highlighting the effect of the different functional group in the Schiff base ligands on their properties. In general, introducing the electron-withdrawing group nitro or acetyl in the 2-pyridyl Schiff base ligands, results in a red-shift in the absorption maxima of the platinum complex. In addition, the enhancement in the antimicrobial activities and the increase in the ct-DNA-binding affinity were also observed when the nitro or acetyl functional group is introduced to the Schiff base ligand in the platinum(II) complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号